Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122045 by mohammad17 last updated on 13/Nov/20

prove that Γs Γ1−s=(π/(sinsπ))

$${prove}\:{that}\:\Gamma{s}\:\Gamma\mathrm{1}−{s}=\frac{\pi}{{sins}\pi} \\ $$

Commented by Dwaipayan Shikari last updated on 14/Nov/20

Γ(s)=(e^(−γs) /s)Π^∞ e^(s/n) (1+(s/n))^(−1)   Γ(1−s)=(e^(−γ+γs) /(1−s))Π^∞ e^((1−s)/n) (1+((1−s)/n))^(−1)   Γ(s)Γ(1−s)=(e^(−γ) /(s(1−s)))Π^∞ e^(1/n) (1+(s/n))^(−1) (1−(s/n)+(1/n))^(−1)   ((πs)/(sinπs))=Π^∞ (1−(s/n))^(−1) (1+(s/n))^(−1)   Γ(s)Γ(1−s)=(e^(−γ+Σ^∞ (1/n)) /(s(1−s))).((πs)/(sinπs)).Π^∞ (1−(s/n))Π^∞ (1−(s/n)+(1/n))^(−1)   Γ(s)Γ(1−s)=(e^(log(n)) /((1−s))).(π/(sinπs))((1−s)(((2−s)/2))...)((1.2.3)/((2−s)(3−s)(4−s)))  Γ(s)Γ(1−s)=lim_(n→∞)  ((πn)/(sinπs)).(1/(n−s+1))  Γ(s)Γ(1−s)=(π/(sinπs))

$$\Gamma\left({s}\right)=\frac{{e}^{−\gamma{s}} }{{s}}\overset{\infty} {\prod}{e}^{\frac{{s}}{{n}}} \left(\mathrm{1}+\frac{{s}}{{n}}\right)^{−\mathrm{1}} \\ $$$$\Gamma\left(\mathrm{1}−{s}\right)=\frac{{e}^{−\gamma+\gamma{s}} }{\mathrm{1}−{s}}\overset{\infty} {\prod}{e}^{\frac{\mathrm{1}−{s}}{{n}}} \left(\mathrm{1}+\frac{\mathrm{1}−{s}}{{n}}\right)^{−\mathrm{1}} \\ $$$$\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\frac{{e}^{−\gamma} }{{s}\left(\mathrm{1}−{s}\right)}\overset{\infty} {\prod}{e}^{\frac{\mathrm{1}}{{n}}} \left(\mathrm{1}+\frac{{s}}{{n}}\right)^{−\mathrm{1}} \left(\mathrm{1}−\frac{{s}}{{n}}+\frac{\mathrm{1}}{{n}}\right)^{−\mathrm{1}} \\ $$$$\frac{\pi{s}}{{sin}\pi{s}}=\overset{\infty} {\prod}\left(\mathrm{1}−\frac{{s}}{{n}}\right)^{−\mathrm{1}} \left(\mathrm{1}+\frac{{s}}{{n}}\right)^{−\mathrm{1}} \\ $$$$\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\frac{{e}^{−\gamma+\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}}} }{{s}\left(\mathrm{1}−{s}\right)}.\frac{\pi{s}}{{sin}\pi{s}}.\overset{\infty} {\prod}\left(\mathrm{1}−\frac{{s}}{{n}}\right)\overset{\infty} {\prod}\left(\mathrm{1}−\frac{{s}}{{n}}+\frac{\mathrm{1}}{{n}}\right)^{−\mathrm{1}} \\ $$$$\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\frac{{e}^{{log}\left({n}\right)} }{\left(\mathrm{1}−{s}\right)}.\frac{\pi}{{sin}\pi{s}}\left(\left(\mathrm{1}−{s}\right)\left(\frac{\mathrm{2}−{s}}{\mathrm{2}}\right)...\right)\frac{\mathrm{1}.\mathrm{2}.\mathrm{3}}{\left(\mathrm{2}−{s}\right)\left(\mathrm{3}−{s}\right)\left(\mathrm{4}−{s}\right)} \\ $$$$\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\pi{n}}{{sin}\pi{s}}.\frac{\mathrm{1}}{{n}−\boldsymbol{{s}}+\mathrm{1}} \\ $$$$\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\frac{\pi}{{sin}\pi{s}} \\ $$

Commented by mnjuly1970 last updated on 14/Nov/20

bravo mr dwaipayan..  very nice as always...

$${bravo}\:{mr}\:{dwaipayan}.. \\ $$$${very}\:{nice}\:{as}\:{always}... \\ $$

Commented by Dwaipayan Shikari last updated on 14/Nov/20

With pleasure��

Answered by mnjuly1970 last updated on 14/Nov/20

 proof by using double    integral.    Γ(s)=∫_0 ^( ∞) x^(s−1) e^(−x) dx ...(i)     Γ(1−s)=∫_0 ^( ∞) y^(−s) e^(−y) dy...(ii)   from  (i) and (ii):    Γ(s)Γ(1−s)=∫_0 ^( ∞) ∫_0 ^( ∞) (1/x)((x/y))^s e^(−(x+y)) dx dy     {_((x/y)=v) ^(x+y=u)  ⇒{_(x=((uv)/(1+v))) ^(y=(u/(1+v)))       dxdy=∣((∂(x,y))/(∂(u,v)))∣dudv  where        ((∂(x,y))/(∂(u,v)))=J(u,v)= determinant ((((∂x/∂u)          (∂x/∂v))),(((∂y/∂u)             (∂y/∂v) )))      ∴  J(u,v)=x_u y_v −x_v y_u =((v/(1+v)))(((−u)/((1+v)^2 )))−((u/((1+v)^2 )))((1/(1+v)))         J(u,v)=((−u)/((1+v)^2 )) ✓       Γ(s)Γ(1−s)=∫_0 ^( ∞) ∫_0 ^( ∞) ((1+v)/(uv))v^s e^(−u) ∣((−u)/((1+v)^2 ))∣dudv  =∫_0 ^( ∞) ∫_0 ^( ∞) (v^(s−1) /(1+v))e^(−u) dudv=∫_0 ^( ∞) (v^(s−1) /(1+v))dv=_(analysis) ^(complex) (π/(sin(πs))) ✓         ...m.n...

$$\:{proof}\:{by}\:{using}\:{double} \\ $$$$\:\:{integral}. \\ $$$$\:\:\Gamma\left({s}\right)=\int_{\mathrm{0}} ^{\:\infty} {x}^{{s}−\mathrm{1}} {e}^{−{x}} {dx}\:...\left({i}\right) \\ $$$$\:\:\:\Gamma\left(\mathrm{1}−{s}\right)=\int_{\mathrm{0}} ^{\:\infty} {y}^{−{s}} {e}^{−{y}} {dy}...\left({ii}\right) \\ $$$$\:{from}\:\:\left({i}\right)\:{and}\:\left({ii}\right): \\ $$$$\:\:\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}}{{x}}\left(\frac{{x}}{{y}}\right)^{{s}} {e}^{−\left({x}+{y}\right)} {dx}\:{dy} \\ $$$$\:\:\:\left\{_{\frac{{x}}{{y}}={v}} ^{{x}+{y}={u}} \:\Rightarrow\left\{_{{x}=\frac{{uv}}{\mathrm{1}+{v}}} ^{{y}=\frac{{u}}{\mathrm{1}+{v}}} \right.\right. \\ $$$$\:\:\:\:{dxdy}=\mid\frac{\partial\left({x},{y}\right)}{\partial\left({u},{v}\right)}\mid{dudv}\:\:{where} \\ $$$$\:\:\:\:\:\:\frac{\partial\left({x},{y}\right)}{\partial\left({u},{v}\right)}={J}\left({u},{v}\right)=\begin{vmatrix}{\frac{\partial{x}}{\partial{u}}\:\:\:\:\:\:\:\:\:\:\frac{\partial{x}}{\partial{v}}}\\{\frac{\partial{y}}{\partial{u}}\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{\partial{y}}{\partial{v}}\:}\end{vmatrix} \\ $$$$\:\:\:\:\therefore\:\:{J}\left({u},{v}\right)={x}_{{u}} {y}_{{v}} −{x}_{{v}} {y}_{{u}} =\left(\frac{{v}}{\mathrm{1}+{v}}\right)\left(\frac{−{u}}{\left(\mathrm{1}+{v}\right)^{\mathrm{2}} }\right)−\left(\frac{{u}}{\left(\mathrm{1}+{v}\right)^{\mathrm{2}} }\right)\left(\frac{\mathrm{1}}{\mathrm{1}+{v}}\right) \\ $$$$\:\:\:\:\:\:\:{J}\left({u},{v}\right)=\frac{−{u}}{\left(\mathrm{1}+{v}\right)^{\mathrm{2}} }\:\checkmark \\ $$$$\:\:\:\:\:\Gamma\left({s}\right)\Gamma\left(\mathrm{1}−{s}\right)=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \frac{\mathrm{1}+{v}}{{uv}}{v}^{{s}} {e}^{−{u}} \mid\frac{−{u}}{\left(\mathrm{1}+{v}\right)^{\mathrm{2}} }\mid{dudv} \\ $$$$=\int_{\mathrm{0}} ^{\:\infty} \int_{\mathrm{0}} ^{\:\infty} \frac{{v}^{{s}−\mathrm{1}} }{\mathrm{1}+{v}}{e}^{−{u}} {dudv}=\int_{\mathrm{0}} ^{\:\infty} \frac{{v}^{{s}−\mathrm{1}} }{\mathrm{1}+{v}}{dv}\underset{{analysis}} {\overset{{complex}} {=}}\frac{\pi}{{sin}\left(\pi{s}\right)}\:\checkmark \\ $$$$\:\:\:\:\:\:\:...{m}.{n}... \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 14/Nov/20

Great!

$${Great}! \\ $$

Commented by mnjuly1970 last updated on 14/Nov/20

thank you..

$${thank}\:{you}.. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com