All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122098 by Rohit412 last updated on 14/Nov/20
Commented by liberty last updated on 14/Nov/20
∫dx(2ax+x2)3=∫dx(2ax+x2)3∫dxx3(2ax−1+1)3=∫x−2dxx(2ax−1+1)3setting(2ax−1+1)3=u⇒2ax−1+1=u23x−2dx=−13au3du∧1x=u23−12aI=∫−(13au3)(u23−12a)(1u)duI=−16a2∫(u23−1)u43duI=−16a2∫(u−23−u−43)duI=−16a2(3u3+3u3)+cI=−16a2(32ax−1+1+32ax−1+1)+cI=−16a2(3(2a+xx)+32a+xx)+cI=−16a2(6a+6xx.x2a+x)+cI=−a+xa2(12ax+x2)+c.▴
Answered by ajfour last updated on 14/Nov/20
I=∫dx(2ax+x2)3/2=∫dx{(x+a)2−a2}3/2letx+a=asecθ⇒dx=asecθtanθdθI=∫asecθtanθdθa3tan3θ=1a2∫cosθsin2θdθNowletsinθ=t⇒cosθdθ=dt⇒I=1a2∫dtt2=−1a2t+c=−1a2sinθ+cI=−1/a21−a2(x+a)2+cI=−∣x+a∣a2x2+2ax+c.
Terms of Service
Privacy Policy
Contact: info@tinkutara.com