Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122098 by Rohit412 last updated on 14/Nov/20

Commented by liberty last updated on 14/Nov/20

∫ (dx/( (√((2ax+x^2 )^3 )))) = ∫ (dx/(((√(2ax+x^2 )))^3 ))  ∫ (dx/(x^3  ((√(2ax^(−1) +1)))^3 )) = ∫ ((x^(−2) dx)/(x (√((2ax^(−1) +1)^3 ))))  setting (√((2ax^(−1) +1)^3 )) = u ⇒ 2ax^(−1) +1=u^(2/3)   x^(−2)  dx = −(1/(3a (u)^(1/3) )) du ∧(1/x) = (((u^2 )^(1/3) −1)/(2a))  I = ∫ −((1/(3a(u)^(1/3) )))((((u^2 )^(1/3) −1)/(2a)))((1/u)) du   I= −(1/(6a^2 )) ∫ (((u^(2/3) −1))/u^(4/3) ) du   I=−(1/(6a^2 )) ∫ (u^(−(2/3)) −u^(−(4/3)) ) du   I = −(1/(6a^2 )) ( 3(u)^(1/3)  +(3/( (u)^(1/3) ))) + c   I = −(1/(6a^2 ))(3(√(2ax^(−1) +1)) + (3/( (√(2ax^(−1) +1)))))+c  I=−(1/(6a^2 )) ( ((3(((2a+x)/x))+3)/( (√((2a+x)/x))))) + c   I=−(1/(6a^2 ))(((6a+6x)/x). ((√x)/( (√(2a+x)))))+c   I=−((a+x)/a^2 ) ((1/( (√(2ax+x^2 )))))+c . ▲

dx(2ax+x2)3=dx(2ax+x2)3dxx3(2ax1+1)3=x2dxx(2ax1+1)3setting(2ax1+1)3=u2ax1+1=u23x2dx=13au3du1x=u2312aI=(13au3)(u2312a)(1u)duI=16a2(u231)u43duI=16a2(u23u43)duI=16a2(3u3+3u3)+cI=16a2(32ax1+1+32ax1+1)+cI=16a2(3(2a+xx)+32a+xx)+cI=16a2(6a+6xx.x2a+x)+cI=a+xa2(12ax+x2)+c.

Answered by ajfour last updated on 14/Nov/20

I=∫(dx/((2ax+x^2 )^(3/2) ))=∫(dx/({(x+a)^2 −a^2 }^(3/2) ))  let x+a=asec θ  ⇒  dx=asec θtan θdθ  I=∫ ((asec θtan θdθ)/(a^3 tan^3 θ)) = (1/a^2 )∫((cos θ)/(sin^2 θ))dθ    Now  let  sin θ=t  ⇒  cos θdθ=dt  ⇒ I=(1/a^2 )∫(dt/t^2 ) = −(1/(a^2 t))+c =− (1/(a^2 sin θ))+c    I =−((1/a^2 )/( (√(1−(a^2 /((x+a)^2 ))))))+c     I=((−∣x+a∣)/(a^2 (√(x^2 +2ax))))+c .

I=dx(2ax+x2)3/2=dx{(x+a)2a2}3/2letx+a=asecθdx=asecθtanθdθI=asecθtanθdθa3tan3θ=1a2cosθsin2θdθNowletsinθ=tcosθdθ=dtI=1a2dtt2=1a2t+c=1a2sinθ+cI=1/a21a2(x+a)2+cI=x+aa2x2+2ax+c.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com