Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122152 by liberty last updated on 14/Nov/20

 (1) lim_(n→∞)  ((1/( (√(n^2 +1))))+(1/( (√(n^2 +2))))+(1/( (√(n^2 +3))))+...+(1/( (√(n^2 +n+1)))) ) =?  (2) lim_(n→∞)  (((2 (n)^(1/n)  −1)^n )/n^2 ) =?

(1)limn(1n2+1+1n2+2+1n2+3+...+1n2+n+1)=?(2)limn(2nn1)nn2=?

Answered by benjo_mathlover last updated on 14/Nov/20

(1) lim_(n→∞)  ((1/( (√(n^2 +1))))+(1/( (√(n^2 +2))))+(1/( (√(n^2 +3))))+...+(1/( (√(n^2 +n+1)))))  note that   ((n+1)/( (√(n^2 +n+1)))) ≤ (1/( (√(n^2 +1))))+(1/( (√(n^2 +2))))+...+(1/( (√(n^2 +n+1)))) ≤ ((n+1)/( (√(n^2 +1))))  This and the squeeze law for sequences  imply that the limit is 1.  lim_(n→∞)  ((n(1+(1/n)))/(n (√(1+(1/n)+(1/n^2 ))))) = lim_(n→∞)  ((n(1+(1/n)))/(n (√(1+(1/n^2 ))))) = 1.

(1)limn(1n2+1+1n2+2+1n2+3+...+1n2+n+1)notethatn+1n2+n+11n2+1+1n2+2+...+1n2+n+1n+1n2+1Thisandthesqueezelawforsequencesimplythatthelimitis1.limnn(1+1n)n1+1n+1n2=limnn(1+1n)n1+1n2=1.

Commented by liberty last updated on 14/Nov/20

thanks

thanks

Answered by mathmax by abdo last updated on 14/Nov/20

U_n =(((2 n^(1/n) −1)^n )/n^2 ) ⇒ U_n =(((2n^(1/n) −1)^n )/((n^(2/n) )^n )) =(((2n^(1/n) −1)/n^(2/n) ))^n   =(2 n^(−(1/n))  −n^(−(2/n)) )^n  ⇒U_n =e^(nlog(2 n^(−(1/n)) −n^((−2)/n) ))   v_n =nlog(2.n^(−(1/n)) −n^(−(2/n)) ) ⇒v_n =nlog(2n^(−(1/n)) {1−(1/2) n^(−(1/n)) })  =nlog(2 n^(−(1/n)) )+n log(1−(1/(2n^(1/n) ))) =nlog2−logn +nlog(1−(1/(2n^(1/n) )))  2n^(1/n)  =2 e^((logn)/n)  →2 ⇒log(1−(1/(2n^(1/n) )))→−nlog2 ⇒lim_(n→+∞) v_n =−∞ ⇒  lim_(n→+∞)  U_n =e^(−∞)  =0

Un=(2n1n1)nn2Un=(2n1n1)n(n2n)n=(2n1n1n2n)n=(2n1nn2n)nUn=enlog(2n1nn2n)vn=nlog(2.n1nn2n)vn=nlog(2n1n{112n1n})=nlog(2n1n)+nlog(112n1n)=nlog2logn+nlog(112n1n)2n1n=2elognn2log(112n1n)nlog2limn+vn=limn+Un=e=0

Terms of Service

Privacy Policy

Contact: info@tinkutara.com