Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122157 by mathmax by abdo last updated on 14/Nov/20

find ∫_(−1) ^1 (√(1+x^4 ))dx

$$\mathrm{find}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{4}} }\mathrm{dx} \\ $$

Commented by peter frank last updated on 14/Nov/20

Qn 121384

$$\mathrm{Qn}\:\mathrm{121384} \\ $$

Answered by mindispower last updated on 15/Nov/20

=2∫_0 ^1 (√(1+x^4 ))dx  x^4 =u⇒dx=u^(−(3/4)) (du/4)  =(1/2)∫_0 ^1 (√(1+u)).u^(−(3/4)) du=I  β(b,c−b)_2 F_1 (a,b,c;z)=∫_0 ^1 x^(b−1) (1−x)^(c−b−1) (1−zx)^(−a) dx  β betta function,_2 F_1 (a,b,c;z) Hypergeometric  function  I⇔(1/2)∫_0 ^1 (1+u)^(1/2) u^(−(3/4)) (1−u)^0 du  ⇒b−1=−(3/4),c−b−1=0,−a=(1/2),−z=1  ⇒b=(1/4),c=(5/4),a=−(1/2),z=−1  I=(1/2)β((1/4),1) _2 F_1 (−(1/2),(1/4),(5/4);−1)  ((β((1/4),1))/2)=(1/2)((Γ((1/4)))/(Γ(1+(1/4)))) =2  we get ∫_(−1) ^1 (√(1+x^4 ))dx=2∫_0 ^1 (√(1+x^4 ))dx=2._2 F_1 (−(1/2),(1/4),(5/4);−1)

$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$${x}^{\mathrm{4}} ={u}\Rightarrow{dx}={u}^{−\frac{\mathrm{3}}{\mathrm{4}}} \frac{{du}}{\mathrm{4}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{u}}.{u}^{−\frac{\mathrm{3}}{\mathrm{4}}} {du}={I} \\ $$$$\beta\left({b},{c}−{b}\right)_{\mathrm{2}} {F}_{\mathrm{1}} \left({a},{b},{c};{z}\right)=\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{{b}−\mathrm{1}} \left(\mathrm{1}−{x}\right)^{{c}−{b}−\mathrm{1}} \left(\mathrm{1}−{zx}\right)^{−{a}} {dx} \\ $$$$\beta\:{betta}\:{function},_{\mathrm{2}} {F}_{\mathrm{1}} \left({a},{b},{c};{z}\right)\:{Hypergeometric} \\ $$$${function} \\ $$$${I}\Leftrightarrow\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}+{u}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {u}^{−\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}−{u}\right)^{\mathrm{0}} {du} \\ $$$$\Rightarrow{b}−\mathrm{1}=−\frac{\mathrm{3}}{\mathrm{4}},{c}−{b}−\mathrm{1}=\mathrm{0},−{a}=\frac{\mathrm{1}}{\mathrm{2}},−{z}=\mathrm{1} \\ $$$$\Rightarrow{b}=\frac{\mathrm{1}}{\mathrm{4}},{c}=\frac{\mathrm{5}}{\mathrm{4}},{a}=−\frac{\mathrm{1}}{\mathrm{2}},{z}=−\mathrm{1} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{2}}\beta\left(\frac{\mathrm{1}}{\mathrm{4}},\mathrm{1}\right)\:_{\mathrm{2}} {F}_{\mathrm{1}} \left(−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{5}}{\mathrm{4}};−\mathrm{1}\right) \\ $$$$\frac{\beta\left(\frac{\mathrm{1}}{\mathrm{4}},\mathrm{1}\right)}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\frac{\Gamma\left(\frac{\mathrm{1}}{\mathrm{4}}\right)}{\Gamma\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{4}}\right)}\:=\mathrm{2} \\ $$$${we}\:{get}\:\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx}=\mathrm{2}._{\mathrm{2}} {F}_{\mathrm{1}} \left(−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{1}}{\mathrm{4}},\frac{\mathrm{5}}{\mathrm{4}};−\mathrm{1}\right) \\ $$

Answered by Dwaipayan Shikari last updated on 15/Nov/20

∫_(−1) ^1 (√(1+x^4 ))dx  =2∫_0 ^1 (√(1−t)) dt      x^4 =−t⇒4x^3 =−(dt/dx)  =(1/2)∫_0 ^1 x^(−3) (√(1−t)) dt  =(1/2)∫_0 ^1 (−1)^(−(3/4)) t^(−(3/4)) (1−t)^(1/2) dt  =((𝚪((1/4))𝚪((3/2)))/(2(√i)))

$$\int_{−\mathrm{1}} ^{\mathrm{1}} \sqrt{\mathrm{1}+{x}^{\mathrm{4}} }{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{\mathrm{1}} \sqrt{\mathrm{1}−{t}}\:{dt}\:\:\:\:\:\:{x}^{\mathrm{4}} =−{t}\Rightarrow\mathrm{4}{x}^{\mathrm{3}} =−\frac{{dt}}{{dx}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} {x}^{−\mathrm{3}} \sqrt{\mathrm{1}−{t}}\:{dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\mathrm{1}} \left(−\mathrm{1}\right)^{−\frac{\mathrm{3}}{\mathrm{4}}} {t}^{−\frac{\mathrm{3}}{\mathrm{4}}} \left(\mathrm{1}−{t}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} {dt} \\ $$$$=\frac{\boldsymbol{\Gamma}\left(\frac{\mathrm{1}}{\mathrm{4}}\right)\boldsymbol{\Gamma}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)}{\mathrm{2}\sqrt{{i}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com