Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122159 by mnjuly1970 last updated on 14/Nov/20

     ... nice  calculus...     prove  that::  Ω=∫_0 ^( (π/2)) {tan^(−1) (ptan(x))−tan^(−1) (qtan(x))}(tan(x)+cot(x))dx  =(π/2) log((p/q))   (    p , q >0   )      m.n.

...nicecalculus... provethat:: Ω=0π2{tan1(ptan(x))tan1(qtan(x))}(tan(x)+cot(x))dx =π2log(pq)(p,q>0) m.n.

Answered by mathmax by abdo last updated on 14/Nov/20

Ω =∫_0 ^(π/2) (arctan(ptanx)dx−∫_0 ^(π/2)  arctan(qtanx)dx  =A_p −A_q   A_p =∫_0 ^(π/2)  arctan(ptanx)dx =_(tanx=t)    ∫_0 ^∞   ((arctan(pt))/(1+t^2 ))dt =f(p)  f^′ (p) =∫_0 ^∞   (t/((1+p^2 t^2 )(1+t^2 )))dt =_(pt=x)    ∫_0 ^∞    (x/(p(1+x^2 )(1+(x^2 /p^2 ))))(dx/p)  =∫_0 ^∞    ((xdx)/((x^2 +1)(x^2 +p^2 ))) let decompose F(x)=(x/((x^2 +1)(x^2 +p^2 )))  F(x)=((ax+b)/(x^2 +1)) +((cx +d)/(x^2  +p^2 ))  F(−x)=−f(x) ⇒((−ax+b)/(x^2 +1)) +((−cx+d)/(x^2  +p^2 )) =((−ax−b)/(x^2  +1))+((−cx−d)/(x^2  +p^2 ))  ⇒b=d=0 ⇒F(x) =((ax)/(x^2 +1))+((cx)/(x^2  +p^2 ))  lim_(x→+∞) xF(x)=0 =a+c ⇒c=−a ⇒  F(x)=((ax)/(x^2 +1))−((ax)/(x^2  +p^2 ))  F(1)=(1/(2(p^2 +1))) =(a/2)−(a/(p^2 +1)) ⇒((1/2)−(1/(p^2 +1)))a =(1/(2(p^2  +1))) ⇒  ((p^2 −1)/(2(p^2 +1)))a =(1/(2(p^2 +1))) ⇒a =(1/(p^2 −1)) ⇒F(x)=(1/(p^2 −1)){(x/(x^2 +1))−(x/(x^2  +p^2 ))} ⇒  f^, (p) =(1/(p^2 −1))∫_0 ^∞ {(x/(x^2 +1))−(x/(x^2 +p^2 ))}dx  =(1/(p^2 −1))×(1/2)[ln∣((x^2 +1)/(x^2 +p^2 ))∣]_0 ^∞  =(1/(2(p^2 −1)))(−2lnp) =−((lnp)/(p^2 −1)) =((lnp)/(1−p^2 ))  ⇒ f(p) =∫_1 ^p   ((lnt)/(1−t^2 ))dt +c  c =f(1) =∫_0 ^∞   ((arctant)/(1+t^2 )) =[arctan^2 t]_0 ^∞ −∫_0 ^∞  ((arctant)/(1+t^2 ))dt ⇒  2c =((π/2))^2  =(π^2 /4) ⇒c =(π^2 /8) ⇒f(p) =∫_1 ^p  ((lnt)/(1−t^2 ))dt +(π^2 /8)  if p<1 ⇒∫_1 ^p  ((lnt)/(1−t^2 ))dt =−∫_p ^1  ((lnt)/(1−t^2 )) =−∫_p ^1 lntΣ_(n=0) ^∞  t^(2n)  dt  =−Σ_(n=0) ^∞  ∫_p ^1 t^(2n)  lnt dt  =−Σ_(n=0) ^∞  u_n   u_n =[(t^(2n+1) /(2n+1))lnt]_p ^1 −∫_p ^1  (t^(2n+1) /(2n+1))(dt/t) =−(p^(2n+1) /(2n+1))−(1/(2n+1))∫_p ^1 t^(2n) dt  =−(p^(2n+1) /(2n+1))−(1/((2n+1)^2 ))[t^(2n+1) ]_p ^1  =−(p^(2n+1) /(2n+1))−(1/((2n+1)^2 ))(1−p^(2n+1) ) ⇒  ∫_1 ^p  ((lnt)/(1−t^2 ))dt =Σ_(n=0) ^∞  (p^(2n+1) /(2n+1)) +Σ_(n=0) ^∞  ((1−p^(2n+1) )/((2n+1)^2 ))....becontinued...

Ω=0π2(arctan(ptanx)dx0π2arctan(qtanx)dx =ApAq Ap=0π2arctan(ptanx)dx=tanx=t0arctan(pt)1+t2dt=f(p) f(p)=0t(1+p2t2)(1+t2)dt=pt=x0xp(1+x2)(1+x2p2)dxp =0xdx(x2+1)(x2+p2)letdecomposeF(x)=x(x2+1)(x2+p2) F(x)=ax+bx2+1+cx+dx2+p2 F(x)=f(x)ax+bx2+1+cx+dx2+p2=axbx2+1+cxdx2+p2 b=d=0F(x)=axx2+1+cxx2+p2 limx+xF(x)=0=a+cc=a F(x)=axx2+1axx2+p2 F(1)=12(p2+1)=a2ap2+1(121p2+1)a=12(p2+1) p212(p2+1)a=12(p2+1)a=1p21F(x)=1p21{xx2+1xx2+p2} f,(p)=1p210{xx2+1xx2+p2}dx =1p21×12[lnx2+1x2+p2]0=12(p21)(2lnp)=lnpp21=lnp1p2 f(p)=1plnt1t2dt+c c=f(1)=0arctant1+t2=[arctan2t]00arctant1+t2dt 2c=(π2)2=π24c=π28f(p)=1plnt1t2dt+π28 ifp<11plnt1t2dt=p1lnt1t2=p1lntn=0t2ndt =n=0p1t2nlntdt=n=0un un=[t2n+12n+1lnt]p1p1t2n+12n+1dtt=p2n+12n+112n+1p1t2ndt =p2n+12n+11(2n+1)2[t2n+1]p1=p2n+12n+11(2n+1)2(1p2n+1) 1plnt1t2dt=n=0p2n+12n+1+n=01p2n+1(2n+1)2....becontinued...

Answered by mindispower last updated on 14/Nov/20

not true sir  q=1⇒∫_0 ^(π/2) tan^− (ptan(x))−xdx=(π/2)ln(p)  tak p→∞⇒  ∫_0 ^(π/2) tan^− (ptan(x))−x  dx=I→+∞  but tan^− (z)<(π/2)⇒  I≤∫_0 ^(π/2) ((π/2)−x)dx=(π^2 /8)

nottruesir q=10π2tan(ptan(x))xdx=π2ln(p) takp 0π2tan(ptan(x))xdx=I+ buttan(z)<π2 I0π2(π2x)dx=π28

Commented bymnjuly1970 last updated on 14/Nov/20

thank you   corrected

thankyou corrected

Answered by mindispower last updated on 14/Nov/20

∫_0 ^(π/2) {tan^− (t.tan(x))}{tan(x)+cot(x)}dx=f(t)  =∫_0 ^(π/2) {tan^− (t.tan(x)){((1+tan^2 (x))/(tan(x)))}dx,tan(x)=s  ⇔  =∫_0 ^∞ tan^− (ts).(ds/s)  f(p)−f(q)=∫_0 ^∞ (tan^− (ps)−tan^− (qs))(ds/s)  =[(tan^− (ps)−tan^− (qs))ln(x)]_0 ^∞ −∫_0 ^∞ {p((ln(s))/(1+p^2 s2))−q((ln(s))/(1+q^2 s^2 ))}ds  tan^− (ps)−tan^− (qs)=((π/2)−(1/(ps))+o((1/s))−((π/2)−(1/(qs))+o((1/s)))  =(1/s)((1/q)−(1/p))+o((1/s))⇒lim_(x→∞) ln(x){tan^− (ps)−tan^− (qs)}=0  ⇔  f(p)−f(q)=−∫_0 ^∞ ((pln(s))/(1+p^2 s2))−((qln(s))/(1+q^2 s^2 ))ds=−(g(p)−g(q))  g(z)=∫_0 ^∞ ((zln(x))/(1+z^2 x^2 ))dx,z>0 withe Quation  llet zx=t  ⇔g(z)=∫_0 ^∞ ((ln(t)−ln(z))/(1+t^2 ))dt  =∫_0 ^∞ ((ln(t))/(1+t^2 ))dt_(=0) −ln(z)∫_0 ^∞ (dt/(1+t^2 ))  =−ln(z)[tan^(−1) (t)]_0 ^∞ =−(π/2)ln(z)  ∫_0 ^∞ {tan^(−1) (ptan(x))−tan^− (qtan(x)}(tan(x)+cot(x))dx  =−g(p)+g(q)=(π/2)ln(p)−(π/2)ln(q)=(π/2)ln((p/q))

0π2{tan(t.tan(x))}{tan(x)+cot(x)}dx=f(t) =0π2{tan(t.tan(x)){1+tan2(x)tan(x)}dx,tan(x)=s =0tan(ts).dss f(p)f(q)=0(tan(ps)tan(qs))dss =[(tan(ps)tan(qs))ln(x)]00{pln(s)1+p2s2qln(s)1+q2s2}ds tan(ps)tan(qs)=(π21ps+o(1s)(π21qs+o(1s)) =1s(1q1p)+o(1s)limxln(x){tan(ps)tan(qs)}=0 f(p)f(q)=0pln(s)1+p2s2qln(s)1+q2s2ds=(g(p)g(q)) g(z)=0zln(x)1+z2x2dx,z>0witheQuation lletzx=t g(z)=0ln(t)ln(z)1+t2dt =0ln(t)1+t2dt=0ln(z)0dt1+t2 =ln(z)[tan1(t)]0=π2ln(z) 0{tan1(ptan(x))tan(qtan(x)}(tan(x)+cot(x))dx =g(p)+g(q)=π2ln(p)π2ln(q)=π2ln(pq)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com