Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122162 by naka3546 last updated on 14/Nov/20

Find  the  real  solution  of  equality :                x^3  − 2x^2  + 4x − 1 = 0  Please  show  your  workings !

$${Find}\:\:{the}\:\:{real}\:\:{solution}\:\:{of}\:\:{equality}\:: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:{x}^{\mathrm{3}} \:−\:\mathrm{2}{x}^{\mathrm{2}} \:+\:\mathrm{4}{x}\:−\:\mathrm{1}\:=\:\mathrm{0} \\ $$$${Please}\:\:{show}\:\:{your}\:\:{workings}\:! \\ $$

Answered by mathmax by abdo last updated on 14/Nov/20

f(x)=x^3 −2x^2  +4x−1 ⇒f^′ (x)=3x^2 −4x+4   f^′ (x)=0 ⇒3x^2 −4x+4 =0 →Δ^′  =4−12 =−8<0  a=3>0 ⇒f^′ (x)>0 ⇒f is strictly increasing on R  f(0)=−1 and f(1) =1−2+4−1 =2>0   f(0).f(−1)<0 ⇒∃!α ∈]0,1[  /f(α)=0  let begin by x_0 =(1/2)  and  x_(n+1) =x_n −((f(x_n ))/(f^′ (x_n )))     (newton method)  x_1 =x_0 −((f(x_0 ))/(f^′ (x_0 ))) =(1/2)−((f((1/2)))/(f^′ ((1/2))))  we have f((1/2))=(1/8)−(1/2) +2−1  =((1−4)/8) +1 =((−3)/8) +1 =(5/8)  f^′ ((1/2))=(3/4)−2 +4 =(3/4)+2 =((11)/4) ⇒x_1 =(1/2)−(5/8)×(4/(11))  =(1/2)−(5/(22)) =((11−5)/(22)) =(6/(22)) =(3/(11))  x_2 =x_1 −((f(x_1 ))/(f^′ (x_1 )))=(3/(11))−((f((3/(11))))/(f^′ ((3/(11))))) =...  x_4  give a better approximation to this root...

$$\mathrm{f}\left(\mathrm{x}\right)=\mathrm{x}^{\mathrm{3}} −\mathrm{2x}^{\mathrm{2}} \:+\mathrm{4x}−\mathrm{1}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)=\mathrm{3x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{4}\: \\ $$$$\mathrm{f}^{'} \left(\mathrm{x}\right)=\mathrm{0}\:\Rightarrow\mathrm{3x}^{\mathrm{2}} −\mathrm{4x}+\mathrm{4}\:=\mathrm{0}\:\rightarrow\Delta^{'} \:=\mathrm{4}−\mathrm{12}\:=−\mathrm{8}<\mathrm{0} \\ $$$$\mathrm{a}=\mathrm{3}>\mathrm{0}\:\Rightarrow\mathrm{f}^{'} \left(\mathrm{x}\right)>\mathrm{0}\:\Rightarrow\mathrm{f}\:\mathrm{is}\:\mathrm{strictly}\:\mathrm{increasing}\:\mathrm{on}\:\mathrm{R} \\ $$$$\mathrm{f}\left(\mathrm{0}\right)=−\mathrm{1}\:\mathrm{and}\:\mathrm{f}\left(\mathrm{1}\right)\:=\mathrm{1}−\mathrm{2}+\mathrm{4}−\mathrm{1}\:=\mathrm{2}>\mathrm{0}\: \\ $$$$\left.\mathrm{f}\left(\mathrm{0}\right).\mathrm{f}\left(−\mathrm{1}\right)<\mathrm{0}\:\Rightarrow\exists!\alpha\:\in\right]\mathrm{0},\mathrm{1}\left[\:\:/\mathrm{f}\left(\alpha\right)=\mathrm{0}\:\:\mathrm{let}\:\mathrm{begin}\:\mathrm{by}\:\mathrm{x}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}}\right. \\ $$$$\mathrm{and}\:\:\mathrm{x}_{\mathrm{n}+\mathrm{1}} =\mathrm{x}_{\mathrm{n}} −\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{n}} \right)}{\mathrm{f}^{'} \left(\mathrm{x}_{\mathrm{n}} \right)}\:\:\:\:\:\left(\mathrm{newton}\:\mathrm{method}\right) \\ $$$$\mathrm{x}_{\mathrm{1}} =\mathrm{x}_{\mathrm{0}} −\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{0}} \right)}{\mathrm{f}^{'} \left(\mathrm{x}_{\mathrm{0}} \right)}\:=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)}{\mathrm{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)}\:\:\mathrm{we}\:\mathrm{have}\:\mathrm{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{1}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{2}}\:+\mathrm{2}−\mathrm{1} \\ $$$$=\frac{\mathrm{1}−\mathrm{4}}{\mathrm{8}}\:+\mathrm{1}\:=\frac{−\mathrm{3}}{\mathrm{8}}\:+\mathrm{1}\:=\frac{\mathrm{5}}{\mathrm{8}} \\ $$$$\mathrm{f}^{'} \left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\frac{\mathrm{3}}{\mathrm{4}}−\mathrm{2}\:+\mathrm{4}\:=\frac{\mathrm{3}}{\mathrm{4}}+\mathrm{2}\:=\frac{\mathrm{11}}{\mathrm{4}}\:\Rightarrow\mathrm{x}_{\mathrm{1}} =\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{8}}×\frac{\mathrm{4}}{\mathrm{11}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{5}}{\mathrm{22}}\:=\frac{\mathrm{11}−\mathrm{5}}{\mathrm{22}}\:=\frac{\mathrm{6}}{\mathrm{22}}\:=\frac{\mathrm{3}}{\mathrm{11}} \\ $$$$\mathrm{x}_{\mathrm{2}} =\mathrm{x}_{\mathrm{1}} −\frac{\mathrm{f}\left(\mathrm{x}_{\mathrm{1}} \right)}{\mathrm{f}^{'} \left(\mathrm{x}_{\mathrm{1}} \right)}=\frac{\mathrm{3}}{\mathrm{11}}−\frac{\mathrm{f}\left(\frac{\mathrm{3}}{\mathrm{11}}\right)}{\mathrm{f}^{'} \left(\frac{\mathrm{3}}{\mathrm{11}}\right)}\:=... \\ $$$$\mathrm{x}_{\mathrm{4}} \:\mathrm{give}\:\mathrm{a}\:\mathrm{better}\:\mathrm{approximation}\:\mathrm{to}\:\mathrm{this}\:\mathrm{root}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com