Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122186 by physicstutes last updated on 14/Nov/20

Obtain a reduction formulae for      I_n  = ∫_0 ^1  (ln x)^n dx   find I_2 = ∫_0 ^1  (ln x)^2  dx

$$\mathrm{Obtain}\:\mathrm{a}\:\mathrm{reduction}\:\mathrm{formulae}\:\mathrm{for}\: \\ $$$$\:\:\:{I}_{{n}} \:=\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{ln}\:{x}\right)^{{n}} {dx}\: \\ $$$$\mathrm{find}\:{I}_{\mathrm{2}} =\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\left(\mathrm{ln}\:{x}\right)^{\mathrm{2}} \:{dx} \\ $$

Answered by Olaf last updated on 14/Nov/20

I_n  = ∫_0 ^1 ln^n xdx  I_0  = 1 and for n ≥ 1 :  I_n  = [xln^n x]_0 ^1 −∫_0 ^1 x(n(1/x)ln^(n−1) x)dx  I_n  = −n∫_0 ^1 ln^(n−1) xdx = −nI_(n−1)   ⇒ I_n  = (−1)^n n!I_0  = (−1)^n n!  If n = 2, I_2  = (−1)^2 2! = 2

$$\mathrm{I}_{{n}} \:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}^{{n}} {xdx} \\ $$$$\mathrm{I}_{\mathrm{0}} \:=\:\mathrm{1}\:\mathrm{and}\:\mathrm{for}\:{n}\:\geqslant\:\mathrm{1}\:: \\ $$$$\mathrm{I}_{{n}} \:=\:\left[{x}\mathrm{ln}^{{n}} {x}\right]_{\mathrm{0}} ^{\mathrm{1}} −\int_{\mathrm{0}} ^{\mathrm{1}} {x}\left({n}\frac{\mathrm{1}}{{x}}\mathrm{ln}^{{n}−\mathrm{1}} {x}\right){dx} \\ $$$$\mathrm{I}_{{n}} \:=\:−{n}\int_{\mathrm{0}} ^{\mathrm{1}} \mathrm{ln}^{{n}−\mathrm{1}} {xdx}\:=\:−{n}\mathrm{I}_{{n}−\mathrm{1}} \\ $$$$\Rightarrow\:\mathrm{I}_{{n}} \:=\:\left(−\mathrm{1}\right)^{{n}} {n}!\mathrm{I}_{\mathrm{0}} \:=\:\left(−\mathrm{1}\right)^{{n}} {n}! \\ $$$$\mathrm{If}\:{n}\:=\:\mathrm{2},\:\mathrm{I}_{\mathrm{2}} \:=\:\left(−\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}!\:=\:\mathrm{2} \\ $$

Commented by physicstutes last updated on 14/Nov/20

This is incredible. Thank you sir Olaf.

$$\mathrm{This}\:\mathrm{is}\:\mathrm{incredible}.\:\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}\:\mathrm{Olaf}. \\ $$

Answered by Dwaipayan Shikari last updated on 14/Nov/20

∫_∞ ^0 t^n xdt      logx=t⇒(1/x)=(dt/dx)  =∫_∞ ^0 t^n e^t dt  =∫_0 ^∞ (−1)^n u^n e^(−t) dt    t=−u  =(−1)^n Γ(n+1)=(−1)^n n!   as per question  It is (−1)^2 2!=2

$$\int_{\infty} ^{\mathrm{0}} {t}^{{n}} {xdt}\:\:\:\:\:\:{logx}={t}\Rightarrow\frac{\mathrm{1}}{{x}}=\frac{{dt}}{{dx}} \\ $$$$=\int_{\infty} ^{\mathrm{0}} {t}^{{n}} {e}^{{t}} {dt} \\ $$$$=\int_{\mathrm{0}} ^{\infty} \left(−\mathrm{1}\right)^{{n}} {u}^{{n}} {e}^{−{t}} {dt}\:\:\:\:{t}=−{u} \\ $$$$=\left(−\mathrm{1}\right)^{{n}} \Gamma\left({n}+\mathrm{1}\right)=\left(−\mathrm{1}\right)^{{n}} {n}!\: \\ $$$${as}\:{per}\:{question} \\ $$$${It}\:{is}\:\left(−\mathrm{1}\right)^{\mathrm{2}} \mathrm{2}!=\mathrm{2} \\ $$

Commented by physicstutes last updated on 14/Nov/20

thats right!

$$\mathrm{thats}\:\mathrm{right}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com