Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 122187 by physicstutes last updated on 14/Nov/20

Let the points P(x_(n−1) ,y_(n−1) ), Q(x_n ,y_n ) and R(x_(n+1) ,y_(n+1) ) lies  on the curve y = f(x). Prove that     y_(n+1) ≈ y_(n−1)  + 2h ((dy/dx))_n .

$$\mathrm{Let}\:\mathrm{the}\:\mathrm{points}\:{P}\left({x}_{{n}−\mathrm{1}} ,{y}_{{n}−\mathrm{1}} \right),\:{Q}\left({x}_{{n}} ,{y}_{{n}} \right)\:\mathrm{and}\:{R}\left({x}_{{n}+\mathrm{1}} ,{y}_{{n}+\mathrm{1}} \right)\:\mathrm{lies} \\ $$$$\mathrm{on}\:\mathrm{the}\:\mathrm{curve}\:{y}\:=\:{f}\left({x}\right).\:\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\:\:{y}_{{n}+\mathrm{1}} \approx\:{y}_{{n}−\mathrm{1}} \:+\:\mathrm{2}{h}\:\left(\frac{{dy}}{{dx}}\right)_{{n}} .\: \\ $$

Answered by Olaf last updated on 14/Nov/20

 { ((((dy/dx))_n  ≈ ((y_n −y_(n−1) )/(x_n −x_(n−1) )) (1))),((((dy/dx))_n  ≈ ((y_(n+1) −y_n )/(x_(n+1) −x_n ))(2))) :}   { ((((dy/dx))_n  ≈ ((y_n −y_(n−1) )/h) (1))),((((dy/dx))_n  ≈ ((y_(n+1) −y_n )/h) (2))) :}  (1)+(2) :  2((dy/dx))_n  ≈ ((y_(n+1) −y_(n−1) )/h)  ⇒ y_(n+1)  ≈ y_(n−1) +2h((dy/dx))_n

$$\begin{cases}{\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:\frac{{y}_{{n}} −{y}_{{n}−\mathrm{1}} }{{x}_{{n}} −{x}_{{n}−\mathrm{1}} }\:\left(\mathrm{1}\right)}\\{\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}} }{{x}_{{n}+\mathrm{1}} −{x}_{{n}} }\left(\mathrm{2}\right)}\end{cases} \\ $$$$\begin{cases}{\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:\frac{{y}_{{n}} −{y}_{{n}−\mathrm{1}} }{{h}}\:\left(\mathrm{1}\right)}\\{\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}} }{{h}}\:\left(\mathrm{2}\right)}\end{cases} \\ $$$$\left(\mathrm{1}\right)+\left(\mathrm{2}\right)\:: \\ $$$$\mathrm{2}\left(\frac{{dy}}{{dx}}\right)_{{n}} \:\approx\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{{h}} \\ $$$$\Rightarrow\:{y}_{{n}+\mathrm{1}} \:\approx\:{y}_{{n}−\mathrm{1}} +\mathrm{2}{h}\left(\frac{{dy}}{{dx}}\right)_{{n}} \\ $$

Commented by physicstutes last updated on 14/Nov/20

Thank you sir...  What if i do this:   Assuming P → 0 , R → 0 such that we can approximate  f(x) to a straight line.  then;  ((dy/dx))_n ≈ ((y_(n+1) −y_(n−1) )/(x_(n+1) −x_(n−1) ))  where x_(n+1) −x_(n−1)  = x_(n+1) −x_n  + x_n −x_(n−1)  = 2h  ⇒ ((dy/dx))_n ≈ ((y_(n+1) −y_(n−1) )/(2h))  ⇒  y_(n+1)  ≈ y_(n−1)  + 2h((dy/dx))_n   Is my approxation (P→0,R→0) worth it?

$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{sir}... \\ $$$$\mathrm{What}\:\mathrm{if}\:\mathrm{i}\:\mathrm{do}\:\mathrm{this}: \\ $$$$\:\mathrm{Assuming}\:{P}\:\rightarrow\:\mathrm{0}\:,\:{R}\:\rightarrow\:\mathrm{0}\:\mathrm{such}\:\mathrm{that}\:\mathrm{we}\:\mathrm{can}\:\mathrm{approximate} \\ $$$${f}\left({x}\right)\:\mathrm{to}\:\mathrm{a}\:\mathrm{straight}\:\mathrm{line}. \\ $$$$\mathrm{then};\:\:\left(\frac{{dy}}{{dx}}\right)_{{n}} \approx\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{{x}_{{n}+\mathrm{1}} −{x}_{{n}−\mathrm{1}} } \\ $$$$\mathrm{where}\:{x}_{{n}+\mathrm{1}} −{x}_{{n}−\mathrm{1}} \:=\:{x}_{{n}+\mathrm{1}} −{x}_{{n}} \:+\:{x}_{{n}} −{x}_{{n}−\mathrm{1}} \:=\:\mathrm{2}{h} \\ $$$$\Rightarrow\:\left(\frac{{dy}}{{dx}}\right)_{{n}} \approx\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{\mathrm{2}{h}} \\ $$$$\Rightarrow\:\:{y}_{{n}+\mathrm{1}} \:\approx\:{y}_{{n}−\mathrm{1}} \:+\:\mathrm{2}{h}\left(\frac{{dy}}{{dx}}\right)_{{n}} \\ $$$$\mathrm{Is}\:\mathrm{my}\:\mathrm{approxation}\:\left({P}\rightarrow\mathrm{0},{R}\rightarrow\mathrm{0}\right)\:\mathrm{worth}\:\mathrm{it}? \\ $$

Commented by Olaf last updated on 14/Nov/20

Yes sir but when you write   ((dy/dx))_n  = ((y_(n+1) −y_(n−1) )/(x_(n+1) −x_n )), the ratio is not  at point x_(n. ) In fact you use the result  to demonstrate the result.

$$\mathrm{Yes}\:\mathrm{sir}\:\mathrm{but}\:\mathrm{when}\:\mathrm{you}\:\mathrm{write}\: \\ $$$$\left(\frac{{dy}}{{dx}}\right)_{{n}} \:=\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{{x}_{{n}+\mathrm{1}} −{x}_{{n}} },\:\mathrm{the}\:\mathrm{ratio}\:\mathrm{is}\:\mathrm{not} \\ $$$$\mathrm{at}\:\mathrm{point}\:{x}_{{n}.\:} \mathrm{In}\:\mathrm{fact}\:\mathrm{you}\:\mathrm{use}\:\mathrm{the}\:\mathrm{result} \\ $$$$\mathrm{to}\:\mathrm{demonstrate}\:\mathrm{the}\:\mathrm{result}. \\ $$

Commented by physicstutes last updated on 14/Nov/20

Actually i write,    ((dy/dx))_n ≈ ((y_(n+1) −y_(n−1) )/(x_(n+1) −x_(n−1) ))    considering the points P(x_(n−1) ,y_(n−1)  ) and R(x_(n+1) ,y_(n+1) )  Now i used the idea that, the step length (or x−differences) is h  so the idea is x_(n+1) −x_n  = x_n −x_(n−1)  = h  ⇒ x_(n+1) −x_(n−1) = x_(n+1) −x_n  + x_n −x_(n−1)  = 2h  This happens when we solve differential equations numerical.  so does this makes more sense?

$$\mathrm{Actually}\:\mathrm{i}\:\mathrm{write}, \\ $$$$\:\:\left(\frac{{dy}}{{dx}}\right)_{{n}} \approx\:\frac{{y}_{{n}+\mathrm{1}} −{y}_{{n}−\mathrm{1}} }{{x}_{{n}+\mathrm{1}} −{x}_{{n}−\mathrm{1}} }\:\: \\ $$$$\mathrm{considering}\:\mathrm{the}\:\mathrm{points}\:{P}\left({x}_{{n}−\mathrm{1}} ,{y}_{{n}−\mathrm{1}} \:\right)\:\mathrm{and}\:{R}\left({x}_{{n}+\mathrm{1}} ,{y}_{{n}+\mathrm{1}} \right) \\ $$$$\mathrm{Now}\:\mathrm{i}\:\mathrm{used}\:\mathrm{the}\:\mathrm{idea}\:\mathrm{that},\:\mathrm{the}\:\mathrm{step}\:\mathrm{length}\:\left(\mathrm{or}\:\mathrm{x}−\mathrm{differences}\right)\:\mathrm{is}\:{h} \\ $$$$\mathrm{so}\:\mathrm{the}\:\mathrm{idea}\:\mathrm{is}\:{x}_{{n}+\mathrm{1}} −{x}_{{n}} \:=\:{x}_{{n}} −{x}_{{n}−\mathrm{1}} \:=\:{h} \\ $$$$\Rightarrow\:{x}_{{n}+\mathrm{1}} −{x}_{{n}−\mathrm{1}} =\:{x}_{{n}+\mathrm{1}} −{x}_{{n}} \:+\:{x}_{{n}} −{x}_{{n}−\mathrm{1}} \:=\:\mathrm{2}{h} \\ $$$$\mathrm{This}\:\mathrm{happens}\:\mathrm{when}\:\mathrm{we}\:\mathrm{solve}\:\mathrm{differential}\:\mathrm{equations}\:\mathrm{numerical}. \\ $$$$\mathrm{so}\:\mathrm{does}\:\mathrm{this}\:\mathrm{makes}\:\mathrm{more}\:\mathrm{sense}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com