All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122205 by mathmax by abdo last updated on 14/Nov/20
find∫dxx(x+1)x2+x
Commented by liberty last updated on 15/Nov/20
∫dx(x2+x)32=∫dxx3(1+x−1)32=∫x−2dxx(1+x−1)32;[u23=1+1x]⇒[23u−13du=−x−2dx]J=∫(u23−1)(−23u−13du)(1u)J=−23∫(u23−1)(u−43)duJ=−23∫(u−23−u−43)duJ=−23[3u13+3u−13]+cJ=−2x+1x−2xx+1+cJ=−2(x+1+xx2+x)+c=−4x+2x2+x+c
Commented by benjo_mathlover last updated on 15/Nov/20
letJ(x)=−4x+2x2+xdJ(x)dx=−[4x2+x−(4x+2)(2x+12x2+x)x2+x]=−[4x2+x−(2x+1)2x2+xx2+x]=−[4x2+4x−4x2−4x−1(x2+x)x2+x]=1x(x+1)x2+xcorrectsirLiberty.
Answered by TANMAY PANACEA last updated on 14/Nov/20
∫(x+1)−xx(x+1)x2+xdx∫dxxx2+x−∫dx(x+1)x2+xa=1x→dx=−1a2dab=1x+1→dx=−1b2db∫−daa2×1a×1a2+1a−∫−dbb2×1b(1b−1)2+(1b−1)∫−da1+a2−∫dbb×1b2−2b+1+1b−1∫−da1+a2−∫db1−b∫−da1+a2+∫d(1−b)1−b−ln(a+1+a2)+(1−b)1212+C−ln(1x+1+1x2+2(1−1x+1)12+c
Terms of Service
Privacy Policy
Contact: info@tinkutara.com