Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122205 by mathmax by abdo last updated on 14/Nov/20

find ∫  (dx/(x(x+1)(√(x^2 +x))))

finddxx(x+1)x2+x

Commented by liberty last updated on 15/Nov/20

 ∫ (dx/((x^2 +x)^(3/2) )) = ∫ (dx/(x^3 (1+x^(−1) )^(3/2) ))   = ∫ ((x^(−2) dx)/(x(1+x^(−1) )^(3/2) )) ; [ u^(2/3)  = 1+(1/x) ]  ⇒ [ (2/3)u^(−(1/3))  du = −x^(−2)  dx ]  J = ∫ (u^(2/3) −1)(−(2/3)u^(−(1/3))  du)((1/u))  J= −(2/3)∫ (u^(2/3) −1)(u^(−(4/3)) ) du  J=−(2/3)∫ (u^(−(2/3)) −u^(−(4/3)) ) du   J = −(2/3)[ 3u^(1/3) +3u^(−(1/3))  ] + c   J = −2(√((x+1)/x))−2(√(x/(x+1))) + c   J=  −2(((x+1+x)/( (√(x^2 +x)))))+ c = −((4x+2)/( (√(x^2 +x)))) + c

dx(x2+x)32=dxx3(1+x1)32=x2dxx(1+x1)32;[u23=1+1x][23u13du=x2dx]J=(u231)(23u13du)(1u)J=23(u231)(u43)duJ=23(u23u43)duJ=23[3u13+3u13]+cJ=2x+1x2xx+1+cJ=2(x+1+xx2+x)+c=4x+2x2+x+c

Commented by benjo_mathlover last updated on 15/Nov/20

let J(x)=−((4x+2)/( (√(x^2 +x))))   ((dJ(x))/dx) = − [ ((4(√(x^2 +x))−(4x+2)(((2x+1)/(2(√(x^2 +x))))))/(x^2 +x)) ]        = − [((4(√(x^2 +x))−(((2x+1)^2 )/( (√(x^2 +x)))))/(x^2 +x)) ]        = − [ ((4x^2 +4x−4x^2 −4x−1)/((x^2 +x)(√(x^2 +x)))) ]        = (1/(x(x+1)(√(x^2 +x))))  correct sir Liberty.

letJ(x)=4x+2x2+xdJ(x)dx=[4x2+x(4x+2)(2x+12x2+x)x2+x]=[4x2+x(2x+1)2x2+xx2+x]=[4x2+4x4x24x1(x2+x)x2+x]=1x(x+1)x2+xcorrectsirLiberty.

Answered by TANMAY PANACEA last updated on 14/Nov/20

∫(((x+1)−x)/(x(x+1)(√(x^2 +x))))dx  ∫(dx/(x(√(x^2 +x))))−∫(dx/((x+1)(√(x^2 +x)) ))  a=(1/x)→dx=((−1)/a^2 ) da     b=(1/(x+1))→dx=−(1/b^2 )db  ∫((−da)/(a^2 ×(1/a)×(√((1/a^2 )+(1/a)))))−∫((−db)/(b^2 ×(1/b)(√(((1/b)−1)^2 +((1/b)−1)))))  ∫((−da)/( (√(1+a^2 ))))−∫(db/(b×(√((1/b^2 )−(2/b)+1+(1/b)−1))))  ∫((−da)/( (√(1+a^2 ))))−∫(db/( (√(1−b))))  ∫((−da)/( (√(1+a^2 ))))+∫((d(1−b))/( (√(1−b))))  −ln(a+(√(1+a^2 )) )+(((1−b)^(1/2) )/(1/2))+C  −ln((1/x)+(√(1+(1/x^2 ))) +2(1−(1/(x+1)))^(1/2) +c

(x+1)xx(x+1)x2+xdxdxxx2+xdx(x+1)x2+xa=1xdx=1a2dab=1x+1dx=1b2dbdaa2×1a×1a2+1adbb2×1b(1b1)2+(1b1)da1+a2dbb×1b22b+1+1b1da1+a2db1bda1+a2+d(1b)1bln(a+1+a2)+(1b)1212+Cln(1x+1+1x2+2(11x+1)12+c

Terms of Service

Privacy Policy

Contact: info@tinkutara.com