Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 122231 by fajri last updated on 15/Nov/20

Answered by mathmax by abdo last updated on 15/Nov/20

e^(tA)  =Σ_(n=0) ^∞  ((t^n A^n )/(n!))  let determine A^n   P_c (A)=det(A−xI) = determinant (((3−x       −1          1)),((2                −x          1)))                                                  ∣  1         −1           2−x∣  =(3−x) determinant (((−x           1)),((−1       2−x)))−2 determinant (((−1          1)),((−1       2−x)))+ determinant (((−1         1)),((−x          1)))  =(3−x)(−x(2−x)+1)−2(−2+x+1)−1+x  =(3−x)(−2x+x^2 +1)−2(x−1)+(x−1)  =(x−1)^2 (3−x)−(x−1) =(x−1)((x−1)(3−x)−1)  =(x−1)(3x−x^2 −3+x−1) =(x−1)(−x^2 +4x−1)  =(1−x)(x^2 −4x +1)  x^2 −4x+1=0 →Δ^′  =4−1=3 ⇒x_1 =2+(√3) and x_2 =2−(√3)  ⇒λ_1 =1 ,λ_2 =2+(√3) ,λ_3 =2−(√3)  if we divide x^n  by p_c (A) we get x^n  =qp_c (A)+u_n x^2  +v_n x +s_n   1 =u_n +v_n +s_n    snd (2+(√3))^n  =u_n (2+(√3))^2  +v_n (2+(√3))+s_n   (2−(√3))^n  =u_n (2−(√3))^2  +v_n (2−(√3)) +s_n  we get the system   { ((u_n +v_n +s_n =1)),(((2+(√3))^2 u_n +(2+(√3))v_n +s_n =(2+(√3))^n )) :}     {(2−(√3))^2 u_n  +(2−(√3))v_n  +s_n =(2−(√3))^n  ⇒   (((1                         1            1)),(((2+(√3))^2    2+(√3)          1)) ). ((u_n ),(v_n ) )  = ((1),(((2+(√3))^n )) )    ((2−(√3))^2     2−(√3)        1  ) (s_n )          ( (2−(√3))^n )  ⇒  M. ((u_n ),(v_n ) )=  ((1),(((2+(√3))^n )) )           (s_n )       ((2−(√3))^n )  ⇒   ((u_n ),(v_n ) )= M^(−1)   ((1),(((2+(√3))^n )) )    ( s_n  )                  ((2−(√3)))   we have  A^n  =u_n  A^2  +v_n A +s_n  I     rest to find  M^(−1)   =(t_(com(M)) /(det M))  ...be continued....

etA=n=0tnAnn!letdetermineAnPc(A)=det(AxI)=|3x112x1|112x=(3x)|x112x|2|1112x|+|11x1|=(3x)(x(2x)+1)2(2+x+1)1+x=(3x)(2x+x2+1)2(x1)+(x1)=(x1)2(3x)(x1)=(x1)((x1)(3x)1)=(x1)(3xx23+x1)=(x1)(x2+4x1)=(1x)(x24x+1)x24x+1=0Δ=41=3x1=2+3andx2=23λ1=1,λ2=2+3,λ3=23ifwedividexnbypc(A)wegetxn=qpc(A)+unx2+vnx+sn1=un+vn+snsnd(2+3)n=un(2+3)2+vn(2+3)+sn(23)n=un(23)2+vn(23)+snwegetthesystem{un+vn+sn=1(2+3)2un+(2+3)vn+sn=(2+3)n{(23)2un+(23)vn+sn=(23)n(111(2+3)22+31).(unvn)=(1(2+3)n)((23)2231)(sn)((23)n)M.(unvn)=(1(2+3)n)(sn)((23)n)(unvn)=M1(1(2+3)n)(sn)((23))wehaveAn=unA2+vnA+snIresttofindM1=tcom(M)detM...becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com