Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122241 by TANMAY PANACEA last updated on 15/Nov/20

limit...

$${limit}... \\ $$

Commented by TANMAY PANACEA last updated on 15/Nov/20

Commented by Dwaipayan Shikari last updated on 15/Nov/20

(((n!))^(1/n) /n).(((Σ^∞ (1/n)))/(log(n)))  lim_(n→∞) ((((n!)/n^n ))^(1/n)  =(((n^n /n^n ).(1/e^n ).(√(2πn))))^(1/n) ).(((Σ^∞ (1/n)−logn+logn)/(logn)))  =lim_(n→∞)    (1/e)((γ/(logn))+1)      (γ=Eulerian  constant)  =(1/e)

$$\frac{\sqrt[{{n}}]{{n}!}}{{n}}.\frac{\left(\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}}\right)}{{log}\left({n}\right)} \\ $$$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left(\sqrt[{{n}}]{\frac{{n}!}{{n}^{{n}} }}\:=\sqrt[{{n}}]{\frac{{n}^{{n}} }{{n}^{{n}} }.\frac{\mathrm{1}}{{e}^{{n}} }.\sqrt{\mathrm{2}\pi{n}}}\right).\left(\frac{\overset{\infty} {\sum}\frac{\mathrm{1}}{{n}}−{logn}+{logn}}{{logn}}\right) \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\:\:\frac{\mathrm{1}}{{e}}\left(\frac{\gamma}{{logn}}+\mathrm{1}\right)\:\:\:\:\:\:\left(\gamma=\mathscr{E}{ulerian}\:\:{constant}\right) \\ $$$$=\frac{\mathrm{1}}{{e}} \\ $$

Commented by mnjuly1970 last updated on 15/Nov/20

mercey mr dwaiypayan   your work and effort    is very admirable.  god keep you′′ young sir′′  and good luck.

$${mercey}\:{mr}\:{dwaiypayan} \\ $$$$\:{your}\:{work}\:{and}\:{effort}\: \\ $$$$\:{is}\:{very}\:{admirable}. \\ $$$${god}\:{keep}\:{you}''\:{young}\:{sir}'' \\ $$$${and}\:{good}\:{luck}. \\ $$

Commented by Dwaipayan Shikari last updated on 15/Nov/20

With always pleasure sir! :)

$$\left.{With}\:{always}\:{pleasure}\:{sir}!\::\right) \\ $$

Commented by TANMAY PANACEA last updated on 15/Nov/20

excellent

$${excellent} \\ $$

Commented by TANMAY PANACEA last updated on 15/Nov/20

Commented by TANMAY PANACEA last updated on 15/Nov/20

lim_(n→∞(((n!)/n^n ))^(1/n) ×lim_(n→∞)  ((((1/1)+(1/2)+(1/3)+..+(1/n)−log_e n+log_e n))/(log_e n)))   First limit  lim_(n→∞)  (((n!)/n^n ))^(1/n)   T_n =((n!)/n^n )   so T_(n+1) =(((n+1)!)/((n+1)^(n+1) ))  lim_(n→∞)  (T_(n+1) /T_n )=(((n+1)n!)/((n+1)(n+1)^n ))×(n^n /(n!))=((n/(n+1)))^n =((1/(1+(1/n))))^n   letP=(1/n)    so   lim_(y→0)  ((1/(1+y)))^(1/y) =lim_(y→0)  (1/((1+y)^(1/y) ))  log_e p=−lim_(y→0)  ((log_e (1+y))/y)=−1  p=e^(−1)   second limit  lim_(n→∞) ((((1/1)+(1/2)+(1/3)+..+(1/n)−log_e n+log_e n)/(log_e n)))  (1+(γ/(log_e n)))→(1+(γ/∞))=1  so answet=(1/e)×1=(1/e)

$${li}\underset{{n}\rightarrow\infty\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} ×{li}\underset{{n}\rightarrow\infty} {{m}}\:\frac{\left(\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{{n}}−{log}_{{e}} {n}+{log}_{{e}} {n}\right)}{{log}_{{e}} {n}}} {{m}} \\ $$$${First}\:{limit}\:\:{li}\underset{{n}\rightarrow\infty} {{m}}\:\left(\frac{{n}!}{{n}^{{n}} }\right)^{\frac{\mathrm{1}}{{n}}} \\ $$$${T}_{{n}} =\frac{{n}!}{{n}^{{n}} }\:\:\:{so}\:{T}_{{n}+\mathrm{1}} =\frac{\left({n}+\mathrm{1}\right)!}{\left({n}+\mathrm{1}\right)^{{n}+\mathrm{1}} } \\ $$$${li}\underset{{n}\rightarrow\infty} {{m}}\:\frac{{T}_{{n}+\mathrm{1}} }{{T}_{{n}} }=\frac{\left({n}+\mathrm{1}\right){n}!}{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{1}\right)^{{n}} }×\frac{{n}^{{n}} }{{n}!}=\left(\frac{{n}}{{n}+\mathrm{1}}\right)^{{n}} =\left(\frac{\mathrm{1}}{\mathrm{1}+\frac{\mathrm{1}}{{n}}}\right)^{{n}} \\ $$$${letP}=\frac{\mathrm{1}}{{n}}\:\:\:\:{so}\:\:\:\underset{{y}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{\mathrm{1}+{y}}\right)^{\frac{\mathrm{1}}{{y}}} ={li}\underset{{y}\rightarrow\mathrm{0}} {{m}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+{y}\right)^{\frac{\mathrm{1}}{{y}}} } \\ $$$${log}_{{e}} {p}=−{li}\underset{{y}\rightarrow\mathrm{0}} {{m}}\:\frac{{log}_{{e}} \left(\mathrm{1}+{y}\right)}{{y}}=−\mathrm{1} \\ $$$${p}={e}^{−\mathrm{1}} \\ $$$${second}\:{limit} \\ $$$${li}\underset{{n}\rightarrow\infty} {{m}}\left(\frac{\frac{\mathrm{1}}{\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+..+\frac{\mathrm{1}}{{n}}−{log}_{{e}} {n}+{log}_{{e}} {n}}{{log}_{{e}} {n}}\right) \\ $$$$\left(\mathrm{1}+\frac{\gamma}{{log}_{{e}} {n}}\right)\rightarrow\left(\mathrm{1}+\frac{\gamma}{\infty}\right)=\mathrm{1} \\ $$$${so}\:{answet}=\frac{\mathrm{1}}{{e}}×\mathrm{1}=\frac{\mathrm{1}}{{e}} \\ $$

Commented by mnjuly1970 last updated on 15/Nov/20

excellent.thank you so much ′′sir tanmay′′...

$${excellent}.{thank}\:{you}\:{so}\:{much}\:''{sir}\:{tanmay}''... \\ $$

Commented by mathmax by abdo last updated on 15/Nov/20

let U_n =(((n!)^(1/n) )/(n log(n)))(1+(1/2)+...+(1/n)) ⇒U_n =(((n!)^(1/n) )/(nlog(n)))H_n   we have H_n ∼ln(n)+γ  and n! ∼n^n e^(−n) (√(2πn)) ⇒  U_n ∼(((n^n e^(−n) (√(2πn)))^(1/n) )/(nlog(n)))(logn +γ)  =((n e^(−1) (2πn)^(1/(2n)) )/(nlog(n)))(γ +logn) =e^(−1) (2πn)^(1/(2n)) (1+(γ/(logn)))  we have lim_(n→+∞) (2πn)^(1/(2n))  =lim_(n→+∞)  e^((log(2πn))/(2n))  =e^o  =1  ⇒  lim_(n→+∞)  U_n =(1/e)

$$\mathrm{let}\:\mathrm{U}_{\mathrm{n}} =\frac{\left(\mathrm{n}!\right)^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{n}\:\mathrm{log}\left(\mathrm{n}\right)}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+...+\frac{\mathrm{1}}{\mathrm{n}}\right)\:\Rightarrow\mathrm{U}_{\mathrm{n}} =\frac{\left(\mathrm{n}!\right)^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{nlog}\left(\mathrm{n}\right)}\mathrm{H}_{\mathrm{n}} \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{H}_{\mathrm{n}} \sim\mathrm{ln}\left(\mathrm{n}\right)+\gamma\:\:\mathrm{and}\:\mathrm{n}!\:\sim\mathrm{n}^{\mathrm{n}} \mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\:\Rightarrow \\ $$$$\mathrm{U}_{\mathrm{n}} \sim\frac{\left(\mathrm{n}^{\mathrm{n}} \mathrm{e}^{−\mathrm{n}} \sqrt{\mathrm{2}\pi\mathrm{n}}\right)^{\frac{\mathrm{1}}{\mathrm{n}}} }{\mathrm{nlog}\left(\mathrm{n}\right)}\left(\mathrm{logn}\:+\gamma\right) \\ $$$$=\frac{\mathrm{n}\:\mathrm{e}^{−\mathrm{1}} \left(\mathrm{2}\pi\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2n}}} }{\mathrm{nlog}\left(\mathrm{n}\right)}\left(\gamma\:+\mathrm{logn}\right)\:=\mathrm{e}^{−\mathrm{1}} \left(\mathrm{2}\pi\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2n}}} \left(\mathrm{1}+\frac{\gamma}{\mathrm{logn}}\right) \\ $$$$\mathrm{we}\:\mathrm{have}\:\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \left(\mathrm{2}\pi\mathrm{n}\right)^{\frac{\mathrm{1}}{\mathrm{2n}}} \:=\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{e}^{\frac{\mathrm{log}\left(\mathrm{2}\pi\mathrm{n}\right)}{\mathrm{2n}}} \:=\mathrm{e}^{\mathrm{o}} \:=\mathrm{1}\:\:\Rightarrow \\ $$$$\mathrm{lim}_{\mathrm{n}\rightarrow+\infty} \:\mathrm{U}_{\mathrm{n}} =\frac{\mathrm{1}}{\mathrm{e}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com