Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122293 by mathocean1 last updated on 15/Nov/20

given f(x)=cos^2 x  for x ∈ [−(π/(12));(π/(12 ))] , ∣f′(x)∣≤(1/2).  1) show that ∀ x, y ∈ [−(π/(12));(π/(12))] ;  ∣cos^2 x−cos^2 y∣≤(1/2)∣x−y∣

givenf(x)=cos2xforx[π12;π12],f(x)∣⩽12.1)showthatx,y[π12;π12];cos2xcos2y∣⩽12xy

Commented by ZiYangLee last updated on 16/Nov/20

By MVT, we have                        ((f(x)−f(y))/(x−y))=f′(c)≤(1/2)  where c∈(x,y),  Hence,                      ∣f(x)−f(y)∣≤(1/2)∣x−y∣

ByMVT,wehavef(x)f(y)xy=f(c)12wherec(x,y),Hence,f(x)f(y)∣⩽12xy

Answered by mathmax by abdo last updated on 15/Nov/20

∀x ∈[−(π/(12)),(π/(12))]  ∣f^′ (x)∣≤(1/2) ⇒−(1/2)≤f^′ (x)≤(1/2) ⇒  −(1/2)∫_x ^y  dt ≤∫_x ^y  f^′ (t)dt ≤(1/2)∫_x ^y  dt ⇒  −(1/2)(y−x) ≤f(y)−f(x)≤(1/2)(y−x) ⇒∣f(x)−f(y)∣≤(1/2)∣x−y∣ ⇒  ∣cos^2 x−cos^2 y∣≤((∣x−y∣)/2)

x[π12,π12]f(x)∣⩽1212f(x)1212xydtxyf(t)dt12xydt12(yx)f(y)f(x)12(yx)⇒∣f(x)f(y)∣⩽12xycos2xcos2y∣⩽xy2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com