All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122298 by mnjuly1970 last updated on 15/Nov/20
...nicecalculus...provethat:∑∞n=1{ζ(2n+1)−1n+1}=−γ+ln(2)✓..m.n.1970..
Answered by mindispower last updated on 17/Nov/20
ζ(s)−1=∫0∞xs−1Γ(s)(ex(ex−1))dx⇒ζ(2n+1)−1n+1=∫0∞x2ndxΓ(2n+1)ex(ex−1)∑n⩾1ζ(2n+1)−1n+1=∫0∞x2ndx(n+1)Γ(2n+1)ex(ex−1)..IΣx2n2n!(n+1)=1x2∑n⩾1x2n+22n!(n+1)=g(x)∑n⩾1x2n+22n!(n+1)=f(x)⇒f′(x)=x∑n⩾12x2n(2n!)=2x(ch(x)−1)=2xsh(x)−2ch(x)−x2+2f(x)=2xsh(x)−x2−2ch(x)+2g(x)=2sh(x)x−1−2ch(x)x2+2x2∫0∞2xsh(x)−x2−2ch(x)+2x2ex(ex−1)dx=S=∫0∞xex−xe−x−x2−ex−e−x+2x2ex(ex−1)dx=∫0∞xe−x−xe−3x−x2e−2x−e−x−e−3x+2e−2xx2(1−e−x)dx..EΨ(z)=∫0∞e−tt−e−zt1−e−tdt∫0∞e−tt−e−t1−e−tdt=Ψ(1)=∫0∞e−t−te−t−e−2tt(1−e−t)dt..niceE=∫0∞te−t−t2e−t−te−2t+t2e−t+te−2t−te−3t−t2e−2t−e−t−e−3t+2e−2tt2(1−e−t)dt=Ψ(1)+∫0∞t2e−t(1−e−t)+te−2t(1−e−t)−e−t(1+e−2t−2e−t)t2(1−e−t)dt=Ψ(1)+∫0∞t2e−t+te−2t−e−t(1−e−t)t2dt=Ψ(1)+TT=∫0∞e−tdt+∫0∞te−2t−e−t+e−2tt2e−stdt=1+w(s)T=w(0)+1w′(s)=∫0∞−e−(2+s)tdt+∫0∞e−t(1+s)−e−t(2+s)tdtw′(s)=−12+s−∫0∞∫2+s1+se−ztdzdtw′(s)=−12+s−∫2+s1+s∫0∞e−ztdtdz=−12+s+ln(2+s1+s)w(s)=−ln(2+s)+(s+2)ln(s+2)−(1+s)ln(1+s)+cw(s)=(s+1)ln(s+2s+1)+c(s+1)ln(1+11+s)+clims→∞w(s)=0⇒lims→∞(s+1)ln(1+11+s)+c=0⇒c=−1⇒w(0)=ln(1+1)−1=ln(2)−1T=1+w(0)=ln(2)S=Ψ(1)+T=−γ+ln(2)...
Commented by mnjuly1970 last updated on 18/Nov/20
bravobravosirmindspower.extraordinarymyfriend.(good)∞
Terms of Service
Privacy Policy
Contact: info@tinkutara.com