Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122298 by mnjuly1970 last updated on 15/Nov/20

     ...nice  calculus...    prove  that :           Σ_(n=1 ) ^∞ {((ζ(2n+1)−1)/(n+1))}=−γ+ln(2)✓     ..m.n.1970..

...nicecalculus...provethat:n=1{ζ(2n+1)1n+1}=γ+ln(2)..m.n.1970..

Answered by mindispower last updated on 17/Nov/20

ζ(s)−1=∫_0 ^∞ (x^(s−1) /(Γ(s)(e^x (e^x −1))))dx  ⇒((ζ(2n+1)−1)/(n+1))=∫_0 ^∞ ((x^(2n) dx)/(Γ(2n+1)e^x (e^x −1)))  Σ_(n≥1) ((ζ(2n+1)−1)/(n+1))=∫_0 ^∞ ((x^(2n) dx)/((n+1)Γ(2n+1)e^x (e^x −1)))..I  Σ(x^(2n) /(2n!(n+1)))=(1/x^2 )Σ_(n≥1) (x^(2n+2) /(2n!(n+1)))=g(x)  Σ_(n≥1) (x^(2n+2) /(2n!(n+1)))=f(x)⇒f′(x)=xΣ_(n≥1) ((2x^(2n) )/((2n!)))   =2x(ch(x)−1)  =2xsh(x)−2ch(x)−x^2 +2  f(x)=2xsh(x)−x^2 −2ch(x)+2  g(x)=((2sh(x))/(x ))−1−((2ch(x))/x^2 )+(2/(x^2  ))  ∫_0 ^∞ ((2xsh(x)−x^2 −2ch(x)+2)/(x^2 e^x (e^x −1)))dx=S  =∫_0 ^∞ ((xe^x −xe^(−x) −x^2 −e^x −e^(−x) +2)/(x^2 e^x (e^x −1)))dx    =∫_0 ^∞ ((xe^(−x) −xe^(−3x) −x^2 e^(−2x) −e^(−x) −e^(−3x) +2e^(−2x) )/(x^2 (1−e^(−x) )))dx..E  Ψ(z)=∫_0 ^∞ (e^(−t) /t)−(e^(−zt) /(1−e^(−t) ))dt  ∫_0 ^∞ (e^(−t) /t)−(e^(−t) /(1−e^(−t) ))dt=Ψ(1)  =∫_0 ^∞ ((e^(−t) −te^(−t) −e^(−2t) )/(t(1−e^(−t) )))dt..nice  E=∫_0 ^∞ ((te^(−t) −t^2 e^(−t) −te^(−2t) +t^2 e^(−t) +te^(−2t) −te^(−3t) −t^2 e^(−2t) −e^(−t) −e^(−3t) +2e^(−2t) )/(t^2 (1−e^(−t) )))dt  =Ψ(1)+∫_0 ^∞ ((t^2 e^(−t) (1−e^(−t) )+te^(−2t) (1−e^(−t) )−e^(−t) (1+e^(−2t) −2e^(−t) ))/(t^2 (1−e^(−t) )))dt  =Ψ(1)+∫_0 ^∞ ((t^2 e^(−t) +te^(−2t) −e^(−t) (1−e^(−t) ))/t^2 )dt=Ψ(1)+T  T=∫_0 ^∞ e^(−t) dt+∫_0 ^∞ ((te^(−2t) −e^(−t)  +e^(−2t) )/t^2 )e^(−st) dt=1+w(s)  T=w(0)+1  w′(s)=∫_0 ^∞ −e^(−(2+s)t) dt+∫_0 ^∞ ((e^(−t(1+s)) −e^(−t(2+s)) )/t) dt  w′(s)=−(1/(2+s))−∫_0 ^∞ ∫_(2+s) ^(1+s) e^(−zt) dzdt  w′(s)=−(1/(2+s))−∫_(2+s) ^(1+s) ∫_0 ^∞ e^(−zt) dtdz  =−(1/(2+s))+ln(((2+s)/(1+s)))  w(s)=−ln(2+s)+(s+2)ln(s+2)−(1+s)ln(1+s)+c  w(s)=(s+1)ln(((s+2)/(s+1)))+c  (s+1)ln(1+(1/(1+s)))+c  lim_(s→∞) w(s)=0⇒lim_(s→∞) (s+1)ln(1+(1/(1+s)))+c=0  ⇒c=−1  ⇒w(0)=ln(1+1)−1=ln(2)−1  T=1+w(0)=ln(2)  S=Ψ(1)+T=−γ+ln(2)...

ζ(s)1=0xs1Γ(s)(ex(ex1))dxζ(2n+1)1n+1=0x2ndxΓ(2n+1)ex(ex1)n1ζ(2n+1)1n+1=0x2ndx(n+1)Γ(2n+1)ex(ex1)..IΣx2n2n!(n+1)=1x2n1x2n+22n!(n+1)=g(x)n1x2n+22n!(n+1)=f(x)f(x)=xn12x2n(2n!)=2x(ch(x)1)=2xsh(x)2ch(x)x2+2f(x)=2xsh(x)x22ch(x)+2g(x)=2sh(x)x12ch(x)x2+2x202xsh(x)x22ch(x)+2x2ex(ex1)dx=S=0xexxexx2exex+2x2ex(ex1)dx=0xexxe3xx2e2xexe3x+2e2xx2(1ex)dx..EΨ(z)=0ettezt1etdt0ettet1etdt=Ψ(1)=0ettete2tt(1et)dt..niceE=0tett2ette2t+t2et+te2tte3tt2e2tete3t+2e2tt2(1et)dt=Ψ(1)+0t2et(1et)+te2t(1et)et(1+e2t2et)t2(1et)dt=Ψ(1)+0t2et+te2tet(1et)t2dt=Ψ(1)+TT=0etdt+0te2tet+e2tt2estdt=1+w(s)T=w(0)+1w(s)=0e(2+s)tdt+0et(1+s)et(2+s)tdtw(s)=12+s02+s1+seztdzdtw(s)=12+s2+s1+s0eztdtdz=12+s+ln(2+s1+s)w(s)=ln(2+s)+(s+2)ln(s+2)(1+s)ln(1+s)+cw(s)=(s+1)ln(s+2s+1)+c(s+1)ln(1+11+s)+climsw(s)=0lims(s+1)ln(1+11+s)+c=0c=1w(0)=ln(1+1)1=ln(2)1T=1+w(0)=ln(2)S=Ψ(1)+T=γ+ln(2)...

Commented by mnjuly1970 last updated on 18/Nov/20

bravo bravo   sir mindspower .  extraordinary my friend.(good)^∞

bravobravosirmindspower.extraordinarymyfriend.(good)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com