Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122323 by mathmax by abdo last updated on 15/Nov/20

calculate  A_n =∫_0 ^∞   (dx/((x^2 +1)(x^2 +2)....(x^2  +n)))  wth n integr natural and n≥1

calculateAn=0dx(x2+1)(x2+2)....(x2+n)wthnintegrnaturalandn1

Commented by Dwaipayan Shikari last updated on 16/Nov/20

∫_0 ^∞ ((1/(x^2 +1))−(1/(x^2 +2)))dx  =(π/2)(1−(1/( (√2))))  ∫_0 ^∞ (1/((x^2 +1)(x^2 +2)(x^2 +3)))=(1/2)∫_0 ^∞ (1/((x^2 +1)))−(1/((x^2 +3)))−∫_0 ^∞ (1/((x^2 +2)))−(1/((x^2 +3)))                                                       =(1/2)((π/2)−(π/(2(√3))))−((π/( 2(√2)))−(π/(2(√3))))                                                       = (π/4)−(π/(2(√2)))+(π/(4(√3)))  ∫_0 ^∞ (1/((x^2 +1)(x^2 +2)(x^2 +3)(x^2 +4)))dx  =(1/3)∫_0 ^∞ (1/((x^2 +1)(x^2 +2)(x^2 +3)))−(1/3)∫_0 ^∞ (1/((x^2 +2)(x^2 +3)(x^2 +4)))  =(π/(12))−(π/(6(√2)))+(π/(6(√3)))−(1/6)∫_0 ^∞ (1/(x^2 +2))−(1/(x^2 +4))+(1/3)∫_0 ^∞ (1/(x^2 +3))−(1/(x^2 +4))  =(π/(12))−(π/(6(√2)))+(π/(6(√3)))−(1/6)((π/(2(√2)))−(π/( 2(√4))))+(1/3)((π/(2(√3)))−(π/(2(√4))))  =(π/(12))−(π/(4(√2)))+(π/(3(√3)))  ....

0(1x2+11x2+2)dx=π2(112)01(x2+1)(x2+2)(x2+3)=1201(x2+1)1(x2+3)01(x2+2)1(x2+3)=12(π2π23)(π22π23)=π4π22+π4301(x2+1)(x2+2)(x2+3)(x2+4)dx=1301(x2+1)(x2+2)(x2+3)1301(x2+2)(x2+3)(x2+4)=π12π62+π631601x2+21x2+4+1301x2+31x2+4=π12π62+π6316(π22π24)+13(π23π24)=π12π42+π33....

Answered by mathmax by abdo last updated on 16/Nov/20

let decompose F(u)=(1/((u+1)(u+2)....(u+n))) =(1/(Π_(k=1) ^n (u+k)))  F(u)=Σ_(k=1) ^n  (a_k /(u+k))    with a_k =lim_(u→−k)   (u+k)F(u)  we have F(u) =(1/((u+1)....(u+k−1)(u+k)(u+k+1)...(u+n)))  (u+k)F(u) =(1/((u+1)(u+2)...(u+k−1)(u+k+1)....(u+n))) ⇒  a_k =(1/((−k+1)(−k+2)....(−1)(−k+k+1)(−k+k+2)...(−k+n)))  =(1/((−1)^(k−1) (k−1)!))×(1/((n−k)!)) =(((−1)^(k−1) )/((k−1)!(n−k)!)) ⇒  F(u)=Σ_(k=1) ^n  (((−1)^(k−1) )/((k−1)!(n−k)!(u+k)))  2A_n =∫_(−∞) ^(+∞) F(x^2 )dx =Σ_(k=1) ^n  (((−1)^(k−1) )/((k−1)!(n−k)!))∫_(−∞) ^(+∞)  (dx/(x^2  +k))  ∫_(−∞) ^(+∞)  (dx/(x^2  +k)) =∫_(−∞) ^(+∞)  (dx/((x−i(√k))(x+i(√k)))) =2iπ Res(f,i(√k))  =2iπ×(1/(2i(√k))) =(π/( (√k))) ⇒ A_n =(π/2) Σ_(k=1) ^n  (((−1)^(k−1) )/((k−1)!(n−k)!(√k)))

letdecomposeF(u)=1(u+1)(u+2)....(u+n)=1k=1n(u+k)F(u)=k=1naku+kwithak=limuk(u+k)F(u)wehaveF(u)=1(u+1)....(u+k1)(u+k)(u+k+1)...(u+n)(u+k)F(u)=1(u+1)(u+2)...(u+k1)(u+k+1)....(u+n)ak=1(k+1)(k+2)....(1)(k+k+1)(k+k+2)...(k+n)=1(1)k1(k1)!×1(nk)!=(1)k1(k1)!(nk)!F(u)=k=1n(1)k1(k1)!(nk)!(u+k)2An=+F(x2)dx=k=1n(1)k1(k1)!(nk)!+dxx2+k+dxx2+k=+dx(xik)(x+ik)=2iπRes(f,ik)=2iπ×12ik=πkAn=π2k=1n(1)k1(k1)!(nk)!k

Terms of Service

Privacy Policy

Contact: info@tinkutara.com