All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122323 by mathmax by abdo last updated on 15/Nov/20
calculateAn=∫0∞dx(x2+1)(x2+2)....(x2+n)wthnintegrnaturalandn⩾1
Commented by Dwaipayan Shikari last updated on 16/Nov/20
∫0∞(1x2+1−1x2+2)dx=π2(1−12)∫0∞1(x2+1)(x2+2)(x2+3)=12∫0∞1(x2+1)−1(x2+3)−∫0∞1(x2+2)−1(x2+3)=12(π2−π23)−(π22−π23)=π4−π22+π43∫0∞1(x2+1)(x2+2)(x2+3)(x2+4)dx=13∫0∞1(x2+1)(x2+2)(x2+3)−13∫0∞1(x2+2)(x2+3)(x2+4)=π12−π62+π63−16∫0∞1x2+2−1x2+4+13∫0∞1x2+3−1x2+4=π12−π62+π63−16(π22−π24)+13(π23−π24)=π12−π42+π33....
Answered by mathmax by abdo last updated on 16/Nov/20
letdecomposeF(u)=1(u+1)(u+2)....(u+n)=1∏k=1n(u+k)F(u)=∑k=1naku+kwithak=limu→−k(u+k)F(u)wehaveF(u)=1(u+1)....(u+k−1)(u+k)(u+k+1)...(u+n)(u+k)F(u)=1(u+1)(u+2)...(u+k−1)(u+k+1)....(u+n)⇒ak=1(−k+1)(−k+2)....(−1)(−k+k+1)(−k+k+2)...(−k+n)=1(−1)k−1(k−1)!×1(n−k)!=(−1)k−1(k−1)!(n−k)!⇒F(u)=∑k=1n(−1)k−1(k−1)!(n−k)!(u+k)2An=∫−∞+∞F(x2)dx=∑k=1n(−1)k−1(k−1)!(n−k)!∫−∞+∞dxx2+k∫−∞+∞dxx2+k=∫−∞+∞dx(x−ik)(x+ik)=2iπRes(f,ik)=2iπ×12ik=πk⇒An=π2∑k=1n(−1)k−1(k−1)!(n−k)!k
Terms of Service
Privacy Policy
Contact: info@tinkutara.com