Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122330 by mnjuly1970 last updated on 15/Nov/20

                ...advanced  calculus...    prove that :     Re(∫_0 ^( (π/2)) sin^3 (x)ln(ln(cos(x)))dx)         =^? ((ln(3)−2γ)/3) ✓

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...{advanced}\:\:{calculus}... \\ $$$$\:\:{prove}\:{that}\:: \\ $$$$\:\:\:\mathscr{R}{e}\left(\int_{\mathrm{0}} ^{\:\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{3}} \left({x}\right){ln}\left({ln}\left({cos}\left({x}\right)\right)\right){dx}\right) \\ $$$$\:\:\:\:\:\:\:\overset{?} {=}\frac{{ln}\left(\mathrm{3}\right)−\mathrm{2}\gamma}{\mathrm{3}}\:\checkmark \\ $$

Answered by mathmax by abdo last updated on 16/Nov/20

from where you get this sir mn...

$$\mathrm{from}\:\mathrm{where}\:\mathrm{you}\:\mathrm{get}\:\mathrm{this}\:\mathrm{sir}\:\mathrm{mn}... \\ $$

Commented by mathmax by abdo last updated on 16/Nov/20

thank you sir

$$\mathrm{thank}\:\mathrm{you}\:\mathrm{sir} \\ $$

Commented by mnjuly1970 last updated on 16/Nov/20

hi mr max  from  App pimterest    and   brilliant  math in google...

$${hi}\:{mr}\:{max} \\ $$$${from} \\ $$$${App}\:{pimterest}\: \\ $$$$\:{and}\: \\ $$$${brilliant}\:\:{math}\:{in}\:{google}... \\ $$

Answered by mindispower last updated on 16/Nov/20

let cos(x)=t⇒sin(x)dx=−dt  ∫_0 ^(π/2) sin^2 (x)ln(ln(cos(x)))sin(x)dx  =∫_0 ^1 (1−t^2 )ln(ln(t))dt  −ln(t)=u⇒dt=−e^(−u) du  Ω=∫_0 ^∞ (1−e^(−2u) )ln(−u)e^(−u) du  ln(−u)=ln(u)+iπ  Re(Ω)=∫_0 ^∞ e^(−u) ln(u)du−∫_0 ^∞ e^(−3u) ln(u)du...I  3u=y⇒du=(dy/3)  ⇔I=(2/3)∫_0 ^∞ e^(−u) ln(u)du+(1/3)∫_0 ^∞ e^(−y) ln(3)dy  Γ(x)=∫_0 ^∞ t^(x−1) e^(−t) dt⇒Γ(1)=∫_0 ^∞ e^(−t) dt  Γ′(x)=∫_0 ^∞ ln(t)t^(x−1) ln(t)dt  Γ′(1)=∫_0 ^∞ ln(t)e^(−t) dt  Re(Ω)=(2/3)Γ′(1)+(1/3)Γ(1)  Γ′(1)=Ψ(1)=−γ  ⇔Re(Ω)=−(2/3)γ+(1/3)=((1−2γ)/3)

$${let}\:{cos}\left({x}\right)={t}\Rightarrow{sin}\left({x}\right){dx}=−{dt} \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {sin}^{\mathrm{2}} \left({x}\right){ln}\left({ln}\left({cos}\left({x}\right)\right)\right){sin}\left({x}\right){dx} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}−{t}^{\mathrm{2}} \right){ln}\left({ln}\left({t}\right)\right){dt} \\ $$$$−{ln}\left({t}\right)={u}\Rightarrow{dt}=−{e}^{−{u}} {du} \\ $$$$\Omega=\int_{\mathrm{0}} ^{\infty} \left(\mathrm{1}−{e}^{−\mathrm{2}{u}} \right){ln}\left(−{u}\right){e}^{−{u}} {du} \\ $$$${ln}\left(−{u}\right)={ln}\left({u}\right)+{i}\pi \\ $$$${Re}\left(\Omega\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ln}\left({u}\right){du}−\int_{\mathrm{0}} ^{\infty} {e}^{−\mathrm{3}{u}} {ln}\left({u}\right){du}...{I} \\ $$$$\mathrm{3}{u}={y}\Rightarrow{du}=\frac{{dy}}{\mathrm{3}} \\ $$$$\Leftrightarrow{I}=\frac{\mathrm{2}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{u}} {ln}\left({u}\right){du}+\frac{\mathrm{1}}{\mathrm{3}}\int_{\mathrm{0}} ^{\infty} {e}^{−{y}} {ln}\left(\mathrm{3}\right){dy} \\ $$$$\Gamma\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {t}^{{x}−\mathrm{1}} {e}^{−{t}} {dt}\Rightarrow\Gamma\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {e}^{−{t}} {dt} \\ $$$$\Gamma'\left({x}\right)=\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){t}^{{x}−\mathrm{1}} {ln}\left({t}\right){dt} \\ $$$$\Gamma'\left(\mathrm{1}\right)=\int_{\mathrm{0}} ^{\infty} {ln}\left({t}\right){e}^{−{t}} {dt} \\ $$$${Re}\left(\Omega\right)=\frac{\mathrm{2}}{\mathrm{3}}\Gamma'\left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{3}}\Gamma\left(\mathrm{1}\right) \\ $$$$\Gamma'\left(\mathrm{1}\right)=\Psi\left(\mathrm{1}\right)=−\gamma \\ $$$$\Leftrightarrow{Re}\left(\Omega\right)=−\frac{\mathrm{2}}{\mathrm{3}}\gamma+\frac{\mathrm{1}}{\mathrm{3}}=\frac{\mathrm{1}−\mathrm{2}\gamma}{\mathrm{3}} \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 16/Nov/20

thank you so much sir max

$${thank}\:{you}\:{so}\:{much}\:{sir}\:{max}\: \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 16/Nov/20

grateful sir midspower.very nice  solution....

$${grateful}\:{sir}\:{midspower}.{very}\:{nice} \\ $$$${solution}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com