Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122406 by mathdave last updated on 16/Nov/20

solve  ∫_0 ^(π/4) ln(tan^2 x+2)dx

solve0π4ln(tan2x+2)dx

Answered by TANMAY PANACEA last updated on 16/Nov/20

f(x)=ln(2+tan^2 x)  f(0)=ln2  f((π/4))=ln3  ∫_0 ^(π/4) ln3 dx>∫_0 ^(π/4) f(x)dx>∫_0 ^(π/4) lm2 dx  (π/4)ln3>I>(π/4)ln2

f(x)=ln(2+tan2x)f(0)=ln2f(π4)=ln30π4ln3dx>0π4f(x)dx>0π4lm2dxπ4ln3>I>π4ln2

Answered by mathmax by abdo last updated on 16/Nov/20

I =∫_0 ^(π/4) ln(1+tan^2 x+1) =∫_0 ^(π/4) ln(1+(1/(cos^2 x)))dx  =∫_0 ^(π/4) ln(1+cos^2 x)dx−2∫_0 ^(π/4) ln(cosx)dx  ∫_0 ^(π/4)  ln(1+cos^2 x)dx =∫_0 ^(π/4) ln(1+((1+cos(2x))/2))dx  =∫_0 ^(π/4)   ln(3+cos(2x))dx−(π/4)ln(2)  =(π/4)ln(3) +∫_0 ^(π/4) ln(1+(1/3)cos(2x))dx−(π/4)ln(2)  ∫_0 ^(π/4) ln(1+(1/3)cos(2x))dx=_(2x=t)   (1/2) ∫_0 ^(π/2) ln(1+(1/3)cost)dt let  f(a) =∫_0 ^(π/2) ln(1+acost)dt  with 0<a<1  f^′ (a) =∫_0 ^(π/2) ((cost)/(1+acost))dt =(1/a)∫_0 ^(π/2) ((1+acost−1)/(1+acost))dt  =(π/(2a))−(1/a) ∫_0 ^(π/2)  (dt/(1+acost))(→tan((t/2))=u)  =(π/(2a))−(1/a) ∫_0 ^1  ((2du)/((1+u^2 )(1+a((1−u^2 )/(1+u^2 )))))=(π/(2a))−(2/a)∫_0 ^1  (du/(1+u^2 +a−au^2 ))  =(π/(2a))−(2/a) ∫_0 ^1  (du/(1+a+(1−a)u^2 )) we have  (2/a)∫_0 ^1  (du/(1+a +(1−a)u^2 )) =(2/(a(1+a)))∫_0 ^1  (du/(1+((1−a)/(1+a))u^2 ))  =_((√((1−a)/(1+a)))u=z)     (2/(a(1+a)))∫_0 ^(√((1−a)/(1+a)))      (1/(1+z^2 ))×((√(1+a))/( (√(1−a))))dz  =(2/(a(√(1−a^2 )))) arctan((√((1−a)/(1+a)))) ⇒  f(a) =(π/2)lna−2∫  ((arctan((√((1−a)/(1+a)))))/(a(√(1−a^2 ))))da +c  ∫   ((arctan((√((1−a)/(1+a)))))/(a(√(1−a^2 ))))da =_(a=cosθ)     ∫  ((arctan(tan((θ/2))))/(cosθ .sinθ)) sinθ dθ  =(1/2)∫     (θ/(cosθ))dθ.....be continued....

I=0π4ln(1+tan2x+1)=0π4ln(1+1cos2x)dx=0π4ln(1+cos2x)dx20π4ln(cosx)dx0π4ln(1+cos2x)dx=0π4ln(1+1+cos(2x)2)dx=0π4ln(3+cos(2x))dxπ4ln(2)=π4ln(3)+0π4ln(1+13cos(2x))dxπ4ln(2)0π4ln(1+13cos(2x))dx=2x=t120π2ln(1+13cost)dtletf(a)=0π2ln(1+acost)dtwith0<a<1f(a)=0π2cost1+acostdt=1a0π21+acost11+acostdt=π2a1a0π2dt1+acost(tan(t2)=u)=π2a1a012du(1+u2)(1+a1u21+u2)=π2a2a01du1+u2+aau2=π2a2a01du1+a+(1a)u2wehave2a01du1+a+(1a)u2=2a(1+a)01du1+1a1+au2=1a1+au=z2a(1+a)01a1+a11+z2×1+a1adz=2a1a2arctan(1a1+a)f(a)=π2lna2arctan(1a1+a)a1a2da+carctan(1a1+a)a1a2da=a=cosθarctan(tan(θ2))cosθ.sinθsinθdθ=12θcosθdθ.....becontinued....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com