Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 122456 by ajfour last updated on 17/Nov/20

Commented by ajfour last updated on 17/Nov/20

y=1+(c/x)         (0<c<(2/(3(√3))))  y=x^2   both these curves intersect at  P, Q, R  as shown;  find eq. of  circle through these three points  without finding the coordinates  of the points  of intersection.

$${y}=\mathrm{1}+\frac{{c}}{{x}}\:\:\:\:\:\:\:\:\:\left(\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\right) \\ $$$${y}={x}^{\mathrm{2}} \\ $$$${both}\:{these}\:{curves}\:{intersect}\:{at} \\ $$$${P},\:{Q},\:{R}\:\:{as}\:{shown};\:\:{find}\:{eq}.\:{of} \\ $$$${circle}\:{through}\:{these}\:{three}\:{points} \\ $$$${without}\:{finding}\:{the}\:{coordinates} \\ $$$${of}\:{the}\:{points}\:\:{of}\:{intersection}. \\ $$

Answered by ajfour last updated on 21/Nov/20

y=x^2    ;  y=1+(c/x)  let x coordinates of intersection  points be  p, q, r.   They are roots of eq.  x^3 −x−c=0  ⇒   p+q+r=0          pq+qr+rp=−1          pqr=c  Eq. of  line ⊥ to QR and passing  through mid point of QR is    y−(((q^2 +r^2 )/2))=−(((x−((q+r)/2)))/(q+r))   but   q+r=−p    and  q^2 +r^2 = p^2 −((2c)/p)     , hence     2y−(p^2 −((2c)/p))=((2x+p)/p)  As,   1+(c/p)=p^2  ⇒  p^2 −((2c)/p)+1=2−(c/p)  ⇒  2y=((2x−c)/p)+2  ⇒  p(y−1)=x−(c/2)      .....(I)  in a similar way eq. of line ⊥ to  chord PQ of circle should be         r(y−1)=x−(c/2)          .....(II)  and eq. of  diameter  ⊥ to chord  PR is      q(y−1)=x−(c/2)      ....(III)  Let   center be   (h,k)  Adding (I), (II), (III)       (p+q+r)(k−1)=3h−((3c)/2)  ⇒        h=(c/2)    &   k=1  radius of circle 𝛒 is found from      3ρ^2 =Σ{((c/2)−p)^2 +(1−p^2 )^2 }    =((3c^2 )/4)−Σp^2 −3cΣp+3−2Σp^2 +3Σp^4    but  Σp=p+q+r=0  hence    3ρ^2 =((3c^2 )/4)−3Σp^2 +3−+3Σ(p^2 +cp)  ⇒  3𝛒^2 =((3c^2 )/4)+3      𝛒=(c^2 /4)+1     .....(II)  ____________________________       Hence eq. of circle is     (x−(c/2))^2 +(y−1)^2 = (c^2 /4)+1  ____________________________

$${y}={x}^{\mathrm{2}} \:\:\:;\:\:{y}=\mathrm{1}+\frac{{c}}{{x}} \\ $$$${let}\:{x}\:{coordinates}\:{of}\:{intersection} \\ $$$${points}\:{be}\:\:\boldsymbol{{p}},\:\boldsymbol{{q}},\:\boldsymbol{{r}}. \\ $$$$\:{They}\:{are}\:{roots}\:{of}\:{eq}.\:\:\boldsymbol{{x}}^{\mathrm{3}} −\boldsymbol{{x}}−\boldsymbol{{c}}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\boldsymbol{{p}}+\boldsymbol{{q}}+\boldsymbol{{r}}=\mathrm{0} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{pq}}+\boldsymbol{{qr}}+\boldsymbol{{rp}}=−\mathrm{1} \\ $$$$\:\:\:\:\:\:\:\:\boldsymbol{{pqr}}=\boldsymbol{{c}} \\ $$$${Eq}.\:{of}\:\:{line}\:\bot\:{to}\:{QR}\:{and}\:{passing} \\ $$$${through}\:{mid}\:{point}\:{of}\:{QR}\:{is} \\ $$$$\:\:{y}−\left(\frac{{q}^{\mathrm{2}} +{r}^{\mathrm{2}} }{\mathrm{2}}\right)=−\frac{\left({x}−\frac{{q}+{r}}{\mathrm{2}}\right)}{{q}+{r}}\: \\ $$$${but}\:\:\:{q}+{r}=−{p}\:\: \\ $$$${and}\:\:{q}^{\mathrm{2}} +{r}^{\mathrm{2}} =\:{p}^{\mathrm{2}} −\frac{\mathrm{2}{c}}{{p}}\:\:\:\:\:,\:{hence}\: \\ $$$$\:\:\mathrm{2}{y}−\left({p}^{\mathrm{2}} −\frac{\mathrm{2}{c}}{{p}}\right)=\frac{\mathrm{2}{x}+{p}}{{p}} \\ $$$${As},\:\:\:\mathrm{1}+\frac{{c}}{{p}}={p}^{\mathrm{2}} \:\Rightarrow\:\:{p}^{\mathrm{2}} −\frac{\mathrm{2}{c}}{{p}}+\mathrm{1}=\mathrm{2}−\frac{{c}}{{p}} \\ $$$$\Rightarrow\:\:\mathrm{2}{y}=\frac{\mathrm{2}{x}−{c}}{{p}}+\mathrm{2} \\ $$$$\Rightarrow\:\:{p}\left({y}−\mathrm{1}\right)={x}−\frac{{c}}{\mathrm{2}}\:\:\:\:\:\:.....\left({I}\right) \\ $$$${in}\:{a}\:{similar}\:{way}\:{eq}.\:{of}\:{line}\:\bot\:{to} \\ $$$${chord}\:{PQ}\:{of}\:{circle}\:{should}\:{be} \\ $$$$\:\:\:\:\:\:\:{r}\left({y}−\mathrm{1}\right)={x}−\frac{{c}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\:.....\left({II}\right) \\ $$$${and}\:{eq}.\:{of}\:\:{diameter}\:\:\bot\:{to}\:{chord} \\ $$$${PR}\:{is}\:\:\:\:\:\:{q}\left({y}−\mathrm{1}\right)={x}−\frac{{c}}{\mathrm{2}}\:\:\:\:\:\:....\left({III}\right) \\ $$$${Let}\:\:\:{center}\:{be}\:\:\:\left({h},{k}\right) \\ $$$${Adding}\:\left({I}\right),\:\left({II}\right),\:\left({III}\right) \\ $$$$\:\:\:\:\:\left({p}+{q}+{r}\right)\left({k}−\mathrm{1}\right)=\mathrm{3}{h}−\frac{\mathrm{3}{c}}{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:\:\:\:\:\boldsymbol{{h}}=\frac{\boldsymbol{{c}}}{\mathrm{2}}\:\:\:\:\&\:\:\:\boldsymbol{{k}}=\mathrm{1} \\ $$$${radius}\:{of}\:{circle}\:\boldsymbol{\rho}\:{is}\:{found}\:{from} \\ $$$$\:\:\:\:\mathrm{3}\rho^{\mathrm{2}} =\Sigma\left\{\left(\frac{{c}}{\mathrm{2}}−{p}\right)^{\mathrm{2}} +\left(\mathrm{1}−{p}^{\mathrm{2}} \right)^{\mathrm{2}} \right\} \\ $$$$\:\:=\frac{\mathrm{3}{c}^{\mathrm{2}} }{\mathrm{4}}−\Sigma{p}^{\mathrm{2}} −\mathrm{3}{c}\Sigma{p}+\mathrm{3}−\mathrm{2}\Sigma{p}^{\mathrm{2}} +\mathrm{3}\Sigma{p}^{\mathrm{4}} \\ $$$$\:{but}\:\:\Sigma{p}={p}+{q}+{r}=\mathrm{0}\:\:{hence} \\ $$$$\:\:\mathrm{3}\rho^{\mathrm{2}} =\frac{\mathrm{3}{c}^{\mathrm{2}} }{\mathrm{4}}−\mathrm{3}\Sigma{p}^{\mathrm{2}} +\mathrm{3}−+\mathrm{3}\Sigma\left({p}^{\mathrm{2}} +{cp}\right) \\ $$$$\Rightarrow\:\:\mathrm{3}\boldsymbol{\rho}^{\mathrm{2}} =\frac{\mathrm{3}\boldsymbol{{c}}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{3} \\ $$$$\:\:\:\:\boldsymbol{\rho}=\frac{\boldsymbol{{c}}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{1}\:\:\:\:\:.....\left(\boldsymbol{{II}}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$\:\:\:\:\:{Hence}\:{eq}.\:{of}\:{circle}\:{is} \\ $$$$\:\:\:\left({x}−\frac{{c}}{\mathrm{2}}\right)^{\mathrm{2}} +\left({y}−\mathrm{1}\right)^{\mathrm{2}} =\:\frac{{c}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{1} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$$ \\ $$

Commented by mr W last updated on 21/Nov/20

great!

$${great}! \\ $$

Commented by ajfour last updated on 21/Nov/20

thanks sir!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com