Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122496 by benjo_mathlover last updated on 17/Nov/20

  V=∫_0 ^3  ((x dx)/( (√(x+1))+(√(5x+1))))   T=∫_(−π/2) ^(π/2) (√(cos x−cos^3 x)) dx

V=30xdxx+1+5x+1T=π/2π/2cosxcos3xdx

Answered by Dwaipayan Shikari last updated on 17/Nov/20

∫_0 ^3 (x/( (√(x+1))+(√(5x+1))))dx=∫_0 ^3 (((√(5x+1))−(√(x+1)))/4)dx  =(1/(30))(5x+1)^(3/2) −(1/6)(x+1)^(3/2) = (1/(30))(16)^(3/2) −(1/6)4^(3/2) −(1/(30))+(1/6)  =((63)/(30))−(7/6)=((63)/(30))−((35)/(30))=((14)/(15))

03xx+1+5x+1dx=035x+1x+14dx=130(5x+1)3216(x+1)32=130(16)3216432130+16=633076=63303530=1415

Answered by MJS_new last updated on 17/Nov/20

∫_(−π/2) ^(π/2) (√(cos x −cos^3  x)) dx=∫_(−π/2) ^(π/2) (√((1−cos^2  x)cos x)) dx=  =∫_(−π/2) ^(π/2) ∣sin x∣(√(cos x)) dx=2∫_0 ^(π/2) sin x (√(cos x)) dx=       [t=cos x → dx=−(dt/(sin x))]  =−2∫_1 ^0 (√t)dt=2∫_0 ^1 (√t)dt=2[(2/3)t^(3/2) ]_0 ^1 =(4/3)

π/2π/2cosxcos3xdx=π/2π/2(1cos2x)cosxdx==π/2π/2sinxcosxdx=2π/20sinxcosxdx=[t=cosxdx=dtsinx]=201tdt=210tdt=2[23t3/2]01=43

Commented by liberty last updated on 17/Nov/20

on interval −(π/2)≤x≤0 ⇒∣sin x∣ = −sin x sir ?  it should be ∫_(−π/2) ^0 −sin x(√(cos x)) dx+∫_0 ^(π/2) sin x(√(cos x)) dx  let cos x = u → { ((u=1)),((u=0)) :}  ∫_0 ^1  (√u) du −∫_1 ^0 (√u) du = 2∫_0 ^1 (√u) du  =[ (4/3)u^(3/2)  ]_0 ^1  = (4/3).

onintervalπ2x0⇒∣sinx=sinxsir?itshouldbe0π/2sinxcosxdx+π/20sinxcosxdxletcosx=u{u=1u=010udu01udu=201udu=[43u3/2]01=43.

Commented by MJS_new last updated on 17/Nov/20

I did the same in my 2^(nd)  line:  ∫_(−π/2) ^(π/2) ...=2∫_0 ^(π/2) ...  or what else do you mean?

Ididthesameinmy2ndline:π/2π/2...=2π/20...orwhatelsedoyoumean?

Terms of Service

Privacy Policy

Contact: info@tinkutara.com