Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122506 by mathace last updated on 17/Nov/20

Answered by TANMAY PANACEA last updated on 17/Nov/20

∫((ln(1+(x^2 −1)^2 ))/(x(√(x^2 −1))))dx  x=seca  ∫((ln(1+tan^4 a))/(seca tana))secatana da  I=∫_0 ^(π/2) ln(1+tan^4 a)da  I=∫_0 ^(π/2) ln(1+(1/(tan^4 a)))da  I=∫_0 ^(π/2) ln(1+tan^4 a)−4∫_0 ^(π/2) lntana da  I=I−4J→J=0  I=∫_0 ^(π/2) ln(1+tan^4 a)da  not reaching to goal

$$\int\frac{{ln}\left(\mathrm{1}+\left({x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \right)}{{x}\sqrt{{x}^{\mathrm{2}} −\mathrm{1}}}{dx} \\ $$$${x}={seca} \\ $$$$\int\frac{{ln}\left(\mathrm{1}+{tan}^{\mathrm{4}} {a}\right)}{{seca}\:{tana}}{secatana}\:{da} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{tan}^{\mathrm{4}} {a}\right){da} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+\frac{\mathrm{1}}{{tan}^{\mathrm{4}} {a}}\right){da} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{tan}^{\mathrm{4}} {a}\right)−\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {lntana}\:{da} \\ $$$${I}={I}−\mathrm{4}{J}\rightarrow{J}=\mathrm{0} \\ $$$${I}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {ln}\left(\mathrm{1}+{tan}^{\mathrm{4}} {a}\right){da} \\ $$$$\boldsymbol{{not}}\:\boldsymbol{{reaching}}\:\boldsymbol{{to}}\:\boldsymbol{{goal}} \\ $$

Commented by mathace last updated on 17/Nov/20

No.It has a finite value. Check your 4th line.

$${No}.{It}\:{has}\:{a}\:{finite}\:{value}.\:{Check}\:{your}\:\mathrm{4}{th}\:{line}. \\ $$

Commented by TANMAY PANACEA last updated on 17/Nov/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mindispower last updated on 17/Nov/20

withe pleasur

$${withe}\:{pleasur}\: \\ $$

Commented by Dwaipayan Shikari last updated on 18/Nov/20

∫_0 ^(π/2) log(1+tan^4 θ)dθ  =∫_0 ^(π/2) log(sin^4 θ+cos^4 θ)−4∫_0 ^(π/2) log(cosθ)dθ  =∫_0 ^(π/2) log(1−2sin^2 θcos^2 θ)+2𝛑log(2)  =∫_0 ^(π/2) log(1−(1/2)sin^2 2θ)+2πlog(2)  =∫_0 ^(π/2) log(cos^2 2θ+(1/2)sin^2 2θ)+2πlog(2)  =πlog(((1+(1/( (√2))))/2))+πlog(4)  =πlog(2+(√2))

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\mathrm{1}+{tan}^{\mathrm{4}} \theta\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({sin}^{\mathrm{4}} \theta+{cos}^{\mathrm{4}} \theta\right)−\mathrm{4}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({cos}\theta\right){d}\theta \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \theta{cos}^{\mathrm{2}} \theta\right)+\mathrm{2}\boldsymbol{\pi{log}}\left(\mathrm{2}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \mathrm{2}\theta\right)+\mathrm{2}\pi{log}\left(\mathrm{2}\right) \\ $$$$=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({cos}^{\mathrm{2}} \mathrm{2}\theta+\frac{\mathrm{1}}{\mathrm{2}}{sin}^{\mathrm{2}} \mathrm{2}\theta\right)+\mathrm{2}\pi{log}\left(\mathrm{2}\right) \\ $$$$=\pi{log}\left(\frac{\mathrm{1}+\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}}{\mathrm{2}}\right)+\pi{log}\left(\mathrm{4}\right) \\ $$$$=\pi{log}\left(\mathrm{2}+\sqrt{\mathrm{2}}\right) \\ $$

Commented by mathace last updated on 18/Nov/20

Well done,sir.

$${Well}\:{done},{sir}. \\ $$

Commented by Dwaipayan Shikari last updated on 18/Nov/20

∫_0 ^(π/2) log(a^2 sin^2 θ+b^2 cos^2 θ)=πlog(((a+b)/2))  I have used this lemma. Thanking you

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {log}\left({a}^{\mathrm{2}} {sin}^{\mathrm{2}} \theta+{b}^{\mathrm{2}} {cos}^{\mathrm{2}} \theta\right)=\pi{log}\left(\frac{{a}+{b}}{\mathrm{2}}\right) \\ $$$${I}\:{have}\:{used}\:{this}\:{lemma}.\:{Thanking}\:{you} \\ $$

Commented by mnjuly1970 last updated on 18/Nov/20

thank you   excellent.bravo...

$${thank}\:{you} \\ $$$$\:{excellent}.{bravo}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com