All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122588 by bramlexs22 last updated on 18/Nov/20
Findthearclengthofthecurvex=14y2−12ln(y)betweenthepointswiththeordinatesy=1andy=2.
Answered by MJS_new last updated on 18/Nov/20
arclengthofx=f(y)isgivenby∫1+(x′)2dyx=14y2−12lnyisdefinedfory>0x′=y2−12y1+(x′)2=(y2+1)24y2=y2+12y[becausey>0]∫y2+12ydy=∫y2+12ydy=14y2+12lny⇒arclengthis34+12ln2
Commented by bramlexs22 last updated on 18/Nov/20
thankyoubothsir
Answered by liberty last updated on 18/Nov/20
ℓ=∫211+(x′)2dydxdy=12y−12y⇒ℓ=∫211+(12y−12y)2dyℓ=∫211+14y2+14y2−12dyℓ=∫2114y2+12+14y2dyℓ=∫21(12y+12y)dy=[14y2+lny2]12ℓ=34+ln22.▴
Terms of Service
Privacy Policy
Contact: info@tinkutara.com