Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122623 by Ar Brandon last updated on 18/Nov/20

Find the limits at (0, 0) of the following functions :  1. f(x,y)=((x^2 y^2 )/(x^2 +y^2 ))        2. f(x,y)=((xy)/(x^2 +y^2 ))      3. f(x,y)=((xy)/(x+y))  4. f(x,y)=((x^2 −y^2 )/(x^2 +y^2 ))       5. f(x,y)=((3x^2 +xy)/( (√(x^2 +y^2 ))))      6. f(x,y)=((x+y)/(x^2 +y^2 ))  7. f(x,y)=((1+x^2 +y^2 )/y)sin(y)    8. f(x,y)=((x^3 +y^3 )/(x^2 +y^2 ))

$$\mathrm{Find}\:\mathrm{the}\:\mathrm{limits}\:\mathrm{at}\:\left(\mathrm{0},\:\mathrm{0}\right)\:\mathrm{of}\:\mathrm{the}\:\mathrm{following}\:\mathrm{functions}\:: \\ $$$$\mathrm{1}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\:\:\:\:\:\:\:\mathrm{2}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{xy}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\:\:\:\:\:\mathrm{3}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{xy}}{\mathrm{x}+\mathrm{y}} \\ $$$$\mathrm{4}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{x}^{\mathrm{2}} −\mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\:\:\:\:\:\:\:\mathrm{5}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{3x}^{\mathrm{2}} +\mathrm{xy}}{\:\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }}\:\:\:\:\:\:\mathrm{6}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{x}+\mathrm{y}}{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$$$\mathrm{7}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{1}+\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{y}}\mathrm{sin}\left(\mathrm{y}\right)\:\:\:\:\mathrm{8}.\:{f}\left(\mathrm{x},\mathrm{y}\right)=\frac{\mathrm{x}^{\mathrm{3}} +\mathrm{y}^{\mathrm{3}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} } \\ $$

Answered by mathmax by abdo last updated on 18/Nov/20

1)∣xy∣≤((x^2 +y^2 )/2) ⇒ x^2 y^2 ≤(1/4)(x^2  +y^2 )^2  ⇒((x^2 y^2 )/(x^2 +y^2 ))≤(1/4)(x^2  +y^2 ) wehave  lim_((x,y)→(0,0))    ((x^2  +y^2 )/4)=0 ⇒lim_((x,y)→(0,0))   f(x,y)=0  2) lim_(x→o) f(x,x) =lim_(x→0) (x^2 /(2x^2 ))=(1/2)  let x=rcosθ and y=sinθ  we have  f(x,y) =((r^2 cosθsinθ)/r^2 )=(1/2)sin(2θ)⇒lim_((x,y)) f(x,y) dont exist..!

$$\left.\mathrm{1}\right)\mid\mathrm{xy}\mid\leqslant\frac{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }{\mathrm{2}}\:\Rightarrow\:\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} \leqslant\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \right)^{\mathrm{2}} \:\Rightarrow\frac{\mathrm{x}^{\mathrm{2}} \mathrm{y}^{\mathrm{2}} }{\mathrm{x}^{\mathrm{2}} +\mathrm{y}^{\mathrm{2}} }\leqslant\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} \right)\:\mathrm{wehave} \\ $$$$\mathrm{lim}_{\left(\mathrm{x},\mathrm{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:\:\:\frac{\mathrm{x}^{\mathrm{2}} \:+\mathrm{y}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0}\:\Rightarrow\mathrm{lim}_{\left(\mathrm{x},\mathrm{y}\right)\rightarrow\left(\mathrm{0},\mathrm{0}\right)} \:\:\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)=\mathrm{0} \\ $$$$\left.\mathrm{2}\right)\:\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{o}} \mathrm{f}\left(\mathrm{x},\mathrm{x}\right)\:=\mathrm{lim}_{\mathrm{x}\rightarrow\mathrm{0}} \frac{\mathrm{x}^{\mathrm{2}} }{\mathrm{2x}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{let}\:\mathrm{x}=\mathrm{rcos}\theta\:\mathrm{and}\:\mathrm{y}=\mathrm{sin}\theta\:\:\mathrm{we}\:\mathrm{have} \\ $$$$\mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:=\frac{\mathrm{r}^{\mathrm{2}} \mathrm{cos}\theta\mathrm{sin}\theta}{\mathrm{r}^{\mathrm{2}} }=\frac{\mathrm{1}}{\mathrm{2}}\mathrm{sin}\left(\mathrm{2}\theta\right)\Rightarrow\mathrm{lim}_{\left(\mathrm{x},\mathrm{y}\right)} \mathrm{f}\left(\mathrm{x},\mathrm{y}\right)\:\mathrm{dont}\:\mathrm{exist}..! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com