Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122624 by Ar Brandon last updated on 18/Nov/20

Prove the equality :  n!=Σ_(k=0) ^n (−1)^k  ((n),(k) )(n−k)^n

Provetheequality:n!=nk=0(1)k(nk)(nk)n

Answered by mindispower last updated on 18/Nov/20

let f(x,y)=e^y (e^y −x)^n   f(x,y)=e^y [Σ_(k=0) ^n (−x)^k C_k ^n e^((n−k)y) ]  =Σ_(k=0) ^n e^((n+1−k)y) (−1)^k x^k C_k ^n   f(1,y)=Σ_(k=0) ^n e^((n+1−k)y) (−1)^k C_n ^k   let∂_y ^k f(1,y) bee k derivate f over y  we want ∂_y ^n f(1,0)  ∂_y ^n f(1,y)=Σ_(k≤n) (n+1−k)^n e^((n+1−k)y) (−1)^k C_n ^k   ∂_y ^n f(1,0)=Σ_(k≤n) (n+1−k)^n (−1)^k C_n ^k   f(1,y)=e^y (e^y −1)^n   =e^y (e^(y/2) (e^(y/2) −e^(−(y/2)) ))^n   =e^((1+(n/2))y) 2^n sh^n ((y/2))=g((y/2))=f(1,y)  let (y/2)=z  g(z)=h(y),(∂h/∂y)=(∂h/∂z).(∂z/∂y)=(∂g/∂z)  .(1/2)  ⇒∂^n h(y)=(1/2^n ).(∂^n g/∂z^n )  ⇒∂_y ^n f(1,y)∣_(y=0) =∂_z ^n e^((2+n)z) sh^n (z)∣_(z=0)   we show that ∀k<n  ∂_x ^k sh^n (x)∣_(x=0) =0..E  ∂_x sh^n (x)=nch(x)sh^(n−1) (x)  we know sh(0)=0  all sh^i (x)∣x=0 give zero only i=0  but derivate k<n the least power of sh is n−k≥1  ⇒ we have all power of sh^m (x),m∈[n−k,n]  =0  ⇒∂_z ^n e^(2+n) sh^n (z)=ΣC_n ^k (e^((2+n)z)   )^((n−k)) sh^n (z)^((k))   by proposition?E?  we now that  the only facteur we want  isC_n ^n e^((2+n)z) (sh^n (z))^((n)) ∣_(z=0)   sh^n (z)^((n)) =(nch(z)sh^(n−1) (z))^(n−1) ..apply E againe  we want nch(z)(sh^(n−1) (z))^(n−1)   =n(ch(z)(n−1)ch(z)(sh^(n−2) (z))^(n−2) .....  =n(n−1)(n−2)........(n−(n−1))(sh^(n−(n−1) (z))^((n−(n−1)))   =(n)!.(sh(z))^′ ∣_(z=0)   =n!ch(0)=n!

letf(x,y)=ey(eyx)nf(x,y)=ey[nk=0(x)kCkne(nk)y]=nk=0e(n+1k)y(1)kxkCknf(1,y)=nk=0e(n+1k)y(1)kCnkletykf(1,y)beekderivatefoverywewantynf(1,0)ynf(1,y)=kn(n+1k)ne(n+1k)y(1)kCnkynf(1,0)=kn(n+1k)n(1)kCnkf(1,y)=ey(ey1)n=ey(ey2(ey2ey2))n=e(1+n2)y2nshn(y2)=g(y2)=f(1,y)lety2=zg(z)=h(y),hy=hz.zy=gz.12nh(y)=12n.ngznynf(1,y)y=0=zne(2+n)zshn(z)z=0weshowthatk<nxkshn(x)x=0=0..Exshn(x)=nch(x)shn1(x)weknowsh(0)=0allshi(x)x=0givezeroonlyi=0butderivatek<ntheleastpowerofshisnk1wehaveallpowerofshm(x),m[nk,n]=0zne2+nshn(z)=ΣCnk(e(2+n)z)(nk)shn(z)(k)byproposition?E?wenowthattheonlyfacteurwewantisCnne(2+n)z(shn(z))(n)z=0shn(z)(n)=(nch(z)shn1(z))n1..applyEagainewewantnch(z)(shn1(z))n1=n(ch(z)(n1)ch(z)(shn2(z))n2.....=n(n1)(n2)........(n(n1))(shn(n1(z))(n(n1))=(n)!.(sh(z))z=0=n!ch(0)=n!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com