All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 122624 by Ar Brandon last updated on 18/Nov/20
Provetheequality:n!=∑nk=0(−1)k(nk)(n−k)n
Answered by mindispower last updated on 18/Nov/20
letf(x,y)=ey(ey−x)nf(x,y)=ey[∑nk=0(−x)kCkne(n−k)y]=∑nk=0e(n+1−k)y(−1)kxkCknf(1,y)=∑nk=0e(n+1−k)y(−1)kCnklet∂ykf(1,y)beekderivatefoverywewant∂ynf(1,0)∂ynf(1,y)=∑k⩽n(n+1−k)ne(n+1−k)y(−1)kCnk∂ynf(1,0)=∑k⩽n(n+1−k)n(−1)kCnkf(1,y)=ey(ey−1)n=ey(ey2(ey2−e−y2))n=e(1+n2)y2nshn(y2)=g(y2)=f(1,y)lety2=zg(z)=h(y),∂h∂y=∂h∂z.∂z∂y=∂g∂z.12⇒∂nh(y)=12n.∂ng∂zn⇒∂ynf(1,y)∣y=0=∂zne(2+n)zshn(z)∣z=0weshowthat∀k<n∂xkshn(x)∣x=0=0..E∂xshn(x)=nch(x)shn−1(x)weknowsh(0)=0allshi(x)∣x=0givezeroonlyi=0butderivatek<ntheleastpowerofshisn−k⩾1⇒wehaveallpowerofshm(x),m∈[n−k,n]=0⇒∂zne2+nshn(z)=ΣCnk(e(2+n)z)(n−k)shn(z)(k)byproposition?E?wenowthattheonlyfacteurwewantisCnne(2+n)z(shn(z))(n)∣z=0shn(z)(n)=(nch(z)shn−1(z))n−1..applyEagainewewantnch(z)(shn−1(z))n−1=n(ch(z)(n−1)ch(z)(shn−2(z))n−2.....=n(n−1)(n−2)........(n−(n−1))(shn−(n−1(z))(n−(n−1))=(n)!.(sh(z))′∣z=0=n!ch(0)=n!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com