Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122631 by MJS_new last updated on 18/Nov/20

solve ∫_((a−1)^2 ) ^a^2  cosh^(−1)  (1/( (√(a−(√x))))) dx with a>0

solvea2(a1)2cosh11axdxwitha>0

Commented byliberty last updated on 18/Nov/20

waw..nice question

waw..nicequestion

Commented byMJS_new last updated on 19/Nov/20

f(a)=∫_((a−1)^2 ) ^a^2  cosh^(−1)  (1/( (√(a−(√x))))) dx is linear for a≥1  I found a nice path to solve it, will post it later

f(a)=a2(a1)2cosh11axdxislinearfora1 Ifoundanicepathtosolveit,willpostitlater

Answered by mathmax by abdo last updated on 18/Nov/20

I =∫_((a−1)^2 ) ^a^2    argch((1/( (√(a−(√x))))))dx  chamgement (√(a−(√x)))=t give  a+(√x)=t^2  ⇒(√x)=t^2 −a ⇒x=(t^2 −a)^2  ⇒  I = ∫_1 ^o  argch((1/t))4t(t^2 −a)dt =−4 ∫_o ^1 t(t^2 −a)ln((1/t)+(√((1/t^2 )−1)))dt  =−4 ∫_0 ^1 t(t^2 −a)ln(((1+(√(1−t^2 )))/t))dt  =_(t=sinθ)    −4 ∫_0 ^(π/2) sinθ(sin^2 θ−a)ln(((1+cosθ)/(sinθ)))cosθ dθ  =−4 ∫_0 ^(π/2) sinθ(sin^2 θ−a)ln(((2cos^2 ((θ/2)))/(2cos((θ/2))sin((θ/2)))))cosθ dθ  =4 ∫_0 ^(π/2) sinθ cosθ(sin^2 θ−a)ln(tan((θ/2)))dθ  =4 ∫_0 ^(π/2) (sin^3 θcosθ −sinθ cosθ)ln(tan((θ/2)))dθ  this integral can be  solved by parts if we put u^′  =sin^3 cosθ−sinθ cosθ and v=ln(tan((θ/2)))  ...be continued...

I=(a1)2a2argch(1ax)dxchamgementax=tgive a+x=t2x=t2ax=(t2a)2 I=1oargch(1t)4t(t2a)dt=4o1t(t2a)ln(1t+1t21)dt =401t(t2a)ln(1+1t2t)dt =t=sinθ40π2sinθ(sin2θa)ln(1+cosθsinθ)cosθdθ =40π2sinθ(sin2θa)ln(2cos2(θ2)2cos(θ2)sin(θ2))cosθdθ =40π2sinθcosθ(sin2θa)ln(tan(θ2))dθ =40π2(sin3θcosθsinθcosθ)ln(tan(θ2))dθthisintegralcanbe solvedbypartsifweputu=sin3cosθsinθcosθandv=ln(tan(θ2)) ...becontinued...

Commented byMJS_new last updated on 19/Nov/20

thank you for trying

thankyoufortrying

Answered by MJS_new last updated on 19/Nov/20

∫cosh^(−1)  (1/( (√(a−(√x))))) dx=       by parts but with a simple trick:       u^′ =1 → u=x−a^2        v=cosh^(−1)  (1/( (√(a−(√x))))) → v′=−(1/(4(√x)((√x)−a)(√((√x)−a+1))))  =(x−a^2 )cosh^(−1)  (1/( (√(a−(√x)))))+(1/4)∫((x−a^2 )/( (√x)((√x)−a)(√((√x)−a+1))))dx=         (1/4)∫((x−a^2 )/( (√x)((√x)−a)(√((√x)−a+1))))dx=            [t=(√((√x)−a+1)) → dx=4(√x)(√((√x)−a+1))dt]       =∫(t^2 +2a−1)dt=(1/3)t(t^2 +3(2a−1))=       =(1/3)((√x)+5a−2)(√((√x)−a+1))    =(x−a^2 )cosh^(−1)  (1/( (√(a−(√x))))) +(1/3)((√x)+5a−2)(√((√x)−a+1))+C    inserting the borders we get  f(a)=(2a−1)cosh^(−1)  (1/( (√(a−∣a−1∣)))) −(((5a+∣a−1∣−2)(√(1−a+∣a−1∣)))/3)+(((5a+∣a∣−2)(√(1−a+∣a∣)))/3)  for 0<a<1 we get  f(a)=(2a−1)cosh^(−1)  (1/( (√(2a−1)))) −(((4a−1)(√(2(1−a))))/3)+((2(3a−1))/3)  for a≥1 we get  f(a)=((2(3a−1))/3)

cosh11axdx= bypartsbutwithasimpletrick: u=1u=xa2 v=cosh11axv=14x(xa)xa+1 =(xa2)cosh11ax+14xa2x(xa)xa+1dx= 14xa2x(xa)xa+1dx= [t=xa+1dx=4xxa+1dt] =(t2+2a1)dt=13t(t2+3(2a1))= =13(x+5a2)xa+1 =(xa2)cosh11ax+13(x+5a2)xa+1+C insertingthebordersweget f(a)=(2a1)cosh11aa1(5a+a12)1a+a13+(5a+a2)1a+a3 for0<a<1weget f(a)=(2a1)cosh112a1(4a1)2(1a)3+2(3a1)3 fora1weget f(a)=2(3a1)3

Commented byliberty last updated on 19/Nov/20

by parts ∫ v du = vu−∫u dv ?

bypartsvdu=vuudv?

Commented byMJS_new last updated on 19/Nov/20

∫u′v=uv−∫uv′

uv=uvuv

Commented byliberty last updated on 19/Nov/20

haha..it′s same sir

haha..itssamesir

Commented byMJS_new last updated on 19/Nov/20

yes

yes

Terms of Service

Privacy Policy

Contact: info@tinkutara.com