Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122671 by mnjuly1970 last updated on 18/Nov/20

             ...nice  integral...     prove that  ::         ∫_0 ^( ∞) cos(πnx)((1/x^2 )−((πcoth(πx))/x))dx                                         =^(???) πln(1−e^(−πn) )                .m.n.

$$\:\:\:\:\:\:\:\:\:\:\:\:\:...{nice}\:\:{integral}... \\ $$$$\:\:\:{prove}\:{that}\:\::: \\ $$$$\:\:\:\:\:\:\:\int_{\mathrm{0}} ^{\:\infty} {cos}\left(\pi{nx}\right)\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\pi{coth}\left(\pi{x}\right)}{{x}}\right){dx} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\overset{???} {=}\pi{ln}\left(\mathrm{1}−{e}^{−\pi{n}} \right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:.{m}.{n}. \\ $$

Commented by mnjuly1970 last updated on 19/Nov/20

grateful mr mindspower.    ′′ complex analysis′.    very nice solution       residues theorey and singularities..

$${grateful}\:{mr}\:{mindspower}. \\ $$$$\:\:''\:{complex}\:{analysis}'. \\ $$$$\:\:{very}\:{nice}\:{solution}\: \\ $$$$\:\:\:\:{residues}\:{theorey}\:{and}\:{singularities}.. \\ $$

Commented by mindispower last updated on 19/Nov/20

withe pleasur sir nice day

$${withe}\:{pleasur}\:{sir}\:{nice}\:{day} \\ $$

Answered by mindispower last updated on 19/Nov/20

(1/2)∫_(−∞) ^∞ cos(πnx)((1/x^2 )−(π/x)coth(πx))dx=(1/2)∫cos(πnx)f(x)dx  pols of f ⇔    e^(πx) =e^(−πx) ⇒e^(2πx) =1⇒x=ik  for k=0  removabal singularity  Res(f,0)=0  Res(f,ik)=lim_(x→ik) (x−ik).((sh(πx)−πxch(πx))/(x^2 sh(πx)))  =((sh(iπk)−πikch(πik))/((ik)^2 .πch(ikπ)))=(i/k),k∈Z^∗   residue over D=C_R ∪[−R,−ε[]ε,R[,  C_R =Re^(iθ) ,θ∈[0,π[⇒x∈D,Imx>0, pols are ik,k∈N^∗   ⇔(1/2)Re∫_(−∞) ^∞ e^(iπnx) f(x)dx  ∫_(−∞) ^∞ e^(iπnx) f(x)dx=2iπRes(e^(iπnx) f,ik)  =2iπΣ_(k≥1) e^(−nπk) .(i/k)=2π(−Σ_(k≥1) (((e^(−nπ) )^k )/k) )  =2πln(1−e^(−nπ) )  ∫_0 ^∞ cos(πnx)((1/x^2 )−π((coth(πx))/x) )dx  =(1/2)Re∫_(−∞) ^∞ e^(iπnx) f(x)dx=(1/2).2πln(1−e^(−nπ) )  =πln(1−e^(−nπ) )

$$\frac{\mathrm{1}}{\mathrm{2}}\int_{−\infty} ^{\infty} {cos}\left(\pi{nx}\right)\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\pi}{{x}}{coth}\left(\pi{x}\right)\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}\int{cos}\left(\pi{nx}\right){f}\left({x}\right){dx} \\ $$$${pols}\:{of}\:{f}\:\Leftrightarrow \\ $$$$ \\ $$$${e}^{\pi{x}} ={e}^{−\pi{x}} \Rightarrow{e}^{\mathrm{2}\pi{x}} =\mathrm{1}\Rightarrow{x}={ik} \\ $$$${for}\:{k}=\mathrm{0}\:\:{removabal}\:{singularity} \\ $$$${Res}\left({f},\mathrm{0}\right)=\mathrm{0} \\ $$$${Res}\left({f},{ik}\right)=\underset{{x}\rightarrow{ik}} {\mathrm{lim}}\left({x}−{ik}\right).\frac{{sh}\left(\pi{x}\right)−\pi{xch}\left(\pi{x}\right)}{{x}^{\mathrm{2}} {sh}\left(\pi{x}\right)} \\ $$$$=\frac{{sh}\left({i}\pi{k}\right)−\pi{ikch}\left(\pi{ik}\right)}{\left({ik}\right)^{\mathrm{2}} .\pi{ch}\left({ik}\pi\right)}=\frac{{i}}{{k}},{k}\in\mathbb{Z}^{\ast} \\ $$$${residue}\:{over}\:{D}={C}_{{R}} \cup\left[−{R},−\epsilon\left[\right]\epsilon,{R}\left[,\right.\right. \\ $$$${C}_{{R}} ={Re}^{{i}\theta} ,\theta\in\left[\mathrm{0},\pi\left[\Rightarrow{x}\in{D},{Imx}>\mathrm{0},\:{pols}\:{are}\:{ik},{k}\in\mathbb{N}^{\ast} \right.\right. \\ $$$$\Leftrightarrow\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{−\infty} ^{\infty} {e}^{{i}\pi{nx}} {f}\left({x}\right){dx} \\ $$$$\int_{−\infty} ^{\infty} {e}^{{i}\pi{nx}} {f}\left({x}\right){dx}=\mathrm{2}{i}\pi{Res}\left({e}^{{i}\pi{nx}} {f},{ik}\right) \\ $$$$=\mathrm{2}{i}\pi\underset{{k}\geqslant\mathrm{1}} {\sum}{e}^{−{n}\pi{k}} .\frac{{i}}{{k}}=\mathrm{2}\pi\left(−\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\left({e}^{−{n}\pi} \right)^{{k}} }{{k}}\:\right) \\ $$$$=\mathrm{2}\pi{ln}\left(\mathrm{1}−{e}^{−{n}\pi} \right) \\ $$$$\int_{\mathrm{0}} ^{\infty} {cos}\left(\pi{nx}\right)\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\pi\frac{{coth}\left(\pi{x}\right)}{{x}}\:\right){dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}{Re}\int_{−\infty} ^{\infty} {e}^{{i}\pi{nx}} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\mathrm{2}}.\mathrm{2}\pi{ln}\left(\mathrm{1}−{e}^{−{n}\pi} \right) \\ $$$$=\pi{ln}\left(\mathrm{1}−{e}^{−{n}\pi} \right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 19/Nov/20

my  solution:    we know:           i:     (1/(2x^2 )) −((πcot(πx))/(2x))=^(⟨easy⟩) Σ_(k=1) ^∞ (1/(k^2 −x^2 )) ✓     ii:  ∫_0 ^( ∞) ((cos(ax))/(b^2 +x^2 ))dx=_(a,b>0) ^(easy)  (π/(2b))e^(−ab)  ✓  x→ix      ((−1)/(2x^2 )) −((πcot(πix))/(2ix))=Σ_(k=) ^∞ (1/(k^2 +x^2 ))(∗)     ::::  cot(πix)=−icoth(πx) ✓      (∗):  ((−1)/(2x^2 )) +((πcoth(πx))/(2x))=Σ_(k=1) ^∞ (1/(k^2 +x^2 ))    Ω =∫_0 ^( ∞) cos(πnx)((1/x^2 )−((πcoth(πx))/x))dx      =−2∫_0 ^( ∞) {cos(πnx)Σ_(k=1) ^∞ (1/(k^2 +x^2 ))}dx  =−2Σ_(k=1) ^∞ ∫_0 ^( ∞) ((cos(πnx))/(k^2 +x^2 ))dx=−πΣ_(k=1) ^∞ (e^(−πkn) /k)  =−πΣ_(k=1) ^∞ (((e^(−πn) )^k )/k) =^(taylor) πln(1−e^(−πn) ) ✓      sincerely yours m.n.1970

$${my}\:\:{solution}: \\ $$$$\:\:{we}\:{know}: \\ $$$$\:\:\:\:\:\:\:\:\:{i}:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:−\frac{\pi{cot}\left(\pi{x}\right)}{\mathrm{2}{x}}\overset{\langle{easy}\rangle} {=}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} −{x}^{\mathrm{2}} }\:\checkmark \\ $$$$\:\:\:{ii}:\:\:\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left({ax}\right)}{{b}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}\underset{{a},{b}>\mathrm{0}} {\overset{{easy}} {=}}\:\frac{\pi}{\mathrm{2}{b}}{e}^{−{ab}} \:\checkmark \\ $$$${x}\rightarrow{ix} \\ $$$$\:\:\:\:\frac{−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:−\frac{\pi{cot}\left(\pi{ix}\right)}{\mathrm{2}{ix}}=\underset{{k}=} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{x}^{\mathrm{2}} }\left(\ast\right) \\ $$$$\:\:\:::::\:\:{cot}\left(\pi{ix}\right)=−{icoth}\left(\pi{x}\right)\:\checkmark \\ $$$$\:\:\:\:\left(\ast\right):\:\:\frac{−\mathrm{1}}{\mathrm{2}{x}^{\mathrm{2}} }\:+\frac{\pi{coth}\left(\pi{x}\right)}{\mathrm{2}{x}}=\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{x}^{\mathrm{2}} } \\ $$$$\:\:\Omega\:=\int_{\mathrm{0}} ^{\:\infty} {cos}\left(\pi{nx}\right)\left(\frac{\mathrm{1}}{{x}^{\mathrm{2}} }−\frac{\pi{coth}\left(\pi{x}\right)}{{x}}\right){dx} \\ $$$$\:\:\:\:=−\mathrm{2}\int_{\mathrm{0}} ^{\:\infty} \left\{{cos}\left(\pi{nx}\right)\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}^{\mathrm{2}} +{x}^{\mathrm{2}} }\right\}{dx} \\ $$$$=−\mathrm{2}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\int_{\mathrm{0}} ^{\:\infty} \frac{{cos}\left(\pi{nx}\right)}{{k}^{\mathrm{2}} +{x}^{\mathrm{2}} }{dx}=−\pi\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{e}^{−\pi{kn}} }{{k}} \\ $$$$=−\pi\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left({e}^{−\pi{n}} \right)^{{k}} }{{k}}\:\overset{{taylor}} {=}\pi{ln}\left(\mathrm{1}−{e}^{−\pi{n}} \right)\:\checkmark \\ $$$$\:\:\:\:{sincerely}\:{yours}\:{m}.{n}.\mathrm{1970} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com