Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 122695 by liberty last updated on 19/Nov/20

Find maximum and minimum values  of f(x,y) = xy on the circle g(x,y)=  x^2 +y^2 −1=0 .

$${Find}\:{maximum}\:{and}\:{minimum}\:{values} \\ $$$${of}\:{f}\left({x},{y}\right)\:=\:{xy}\:{on}\:{the}\:{circle}\:{g}\left({x},{y}\right)= \\ $$$${x}^{\mathrm{2}} +{y}^{\mathrm{2}} −\mathrm{1}=\mathrm{0}\:. \\ $$

Answered by john santu last updated on 19/Nov/20

By Lagrange multiplier    ▽f(p) = λ ▽g(p) ,where P is any point    (((∂f/∂x)),((∂f/∂y)) ) = λ  (((∂g/∂x)),((∂g/∂y)) )    ((y),(x) ) =  (((2λx)),((2λy)) ) → { ((λ=(y/(2x)))),((λ=(x/(2y)))) :}   ⇒ (y/(2x)) = (x/(2y)) ⇒x^2 =y^2  ∧x^2 +y^2 =1   this gives four solutions     { ((((1/( (√2))),(1/( (√2)))) , ((1/( (√2))),−(1/( (√2)))))),(((−(1/( (√2))),(1/( (√2)))) ,(−(1/( (√2))),−(1/( (√2)))))) :}  Evaluating f at these four points  we get max value is (1/2) and min value  is −(1/2).

$${By}\:{Lagrange}\:{multiplier}\: \\ $$$$\:\bigtriangledown{f}\left({p}\right)\:=\:\lambda\:\bigtriangledown{g}\left({p}\right)\:,{where}\:{P}\:{is}\:{any}\:{point} \\ $$$$\:\begin{pmatrix}{\frac{\partial{f}}{\partial{x}}}\\{\frac{\partial{f}}{\partial{y}}}\end{pmatrix}\:=\:\lambda\:\begin{pmatrix}{\frac{\partial{g}}{\partial{x}}}\\{\frac{\partial{g}}{\partial{y}}}\end{pmatrix} \\ $$$$\:\begin{pmatrix}{{y}}\\{{x}}\end{pmatrix}\:=\:\begin{pmatrix}{\mathrm{2}\lambda{x}}\\{\mathrm{2}\lambda{y}}\end{pmatrix}\:\rightarrow\begin{cases}{\lambda=\frac{{y}}{\mathrm{2}{x}}}\\{\lambda=\frac{{x}}{\mathrm{2}{y}}}\end{cases} \\ $$$$\:\Rightarrow\:\frac{{y}}{\mathrm{2}{x}}\:=\:\frac{{x}}{\mathrm{2}{y}}\:\Rightarrow{x}^{\mathrm{2}} ={y}^{\mathrm{2}} \:\wedge{x}^{\mathrm{2}} +{y}^{\mathrm{2}} =\mathrm{1} \\ $$$$\:{this}\:{gives}\:{four}\:{solutions}\: \\ $$$$\:\begin{cases}{\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\:,\:\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)}\\{\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)\:,\left(−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right)}\end{cases} \\ $$$${Evaluating}\:{f}\:{at}\:{these}\:{four}\:{points} \\ $$$${we}\:{get}\:{max}\:{value}\:{is}\:\frac{\mathrm{1}}{\mathrm{2}}\:{and}\:{min}\:{value} \\ $$$${is}\:−\frac{\mathrm{1}}{\mathrm{2}}. \\ $$

Answered by mr W last updated on 19/Nov/20

P=xy  y=(P/x)  x^2 +(P^2 /x^2 )−1=0  2x+((2PP′)/x^2 )−((2P^2 )/x^3 )=0  P′=0  x−(P^2 /x^3 )=0  x−((x^2 y^2 )/x^3 )=0  x^2 =y^2 =(1/2)  ⇒x=±(1/( (√2))), y=±(1/( (√2)))  (xy)_(max) =(1/2)  (xy)_(min) =−(1/2)

$${P}={xy} \\ $$$${y}=\frac{{P}}{{x}} \\ $$$${x}^{\mathrm{2}} +\frac{{P}^{\mathrm{2}} }{{x}^{\mathrm{2}} }−\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{2}{x}+\frac{\mathrm{2}{PP}'}{{x}^{\mathrm{2}} }−\frac{\mathrm{2}{P}^{\mathrm{2}} }{{x}^{\mathrm{3}} }=\mathrm{0} \\ $$$${P}'=\mathrm{0} \\ $$$${x}−\frac{{P}^{\mathrm{2}} }{{x}^{\mathrm{3}} }=\mathrm{0} \\ $$$${x}−\frac{{x}^{\mathrm{2}} {y}^{\mathrm{2}} }{{x}^{\mathrm{3}} }=\mathrm{0} \\ $$$${x}^{\mathrm{2}} ={y}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\:{y}=\pm\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}} \\ $$$$\left({xy}\right)_{{max}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\left({xy}\right)_{{min}} =−\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com