Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 122704 by mnjuly1970 last updated on 19/Nov/20

           ... general  calculus...   i:   (1/( (√(1−4x)))) =^(??) Σ_(n=0 ) ^∞ [ (((2n)),(( n)) )  x^n ]   ii: (π/2) =^? Σ_(n=0) ^∞ [( (((2n)),(( n)) )/4^n ) (1/((2n+1)))]

$$\:\:\:\:\:\:\:\:\:\:\:...\:{general}\:\:{calculus}... \\ $$$$\:{i}:\:\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}}}\:\overset{??} {=}\underset{{n}=\mathrm{0}\:} {\overset{\infty} {\sum}}\left[\begin{pmatrix}{\mathrm{2}{n}}\\{\:{n}}\end{pmatrix}\:\:{x}^{{n}} \right] \\ $$$$\:{ii}:\:\frac{\pi}{\mathrm{2}}\:\overset{?} {=}\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\frac{\begin{pmatrix}{\mathrm{2}{n}}\\{\:{n}}\end{pmatrix}}{\mathrm{4}^{{n}} }\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)}\right] \\ $$$$\:\:\:\:\:\:\:\:\:\: \\ $$

Answered by Dwaipayan Shikari last updated on 19/Nov/20

(1/( (√(1−4x)))) =(1−4x)^(−(1/2)) =1+2x+(3/4)16x^2 +((15)/8)64x^3 +...               =  1+2x+12x^2 +120x^3 +..             = 1+((2!)/(1!))x+((4!)/(2!))x^2 +((6!)/(3!))x^3 +..=Σ_(n=0) ^∞ [ (((2n)),(n) )x^n ]

$$\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}}}\:=\left(\mathrm{1}−\mathrm{4}{x}\right)^{−\frac{\mathrm{1}}{\mathrm{2}}} =\mathrm{1}+\mathrm{2}{x}+\frac{\mathrm{3}}{\mathrm{4}}\mathrm{16}{x}^{\mathrm{2}} +\frac{\mathrm{15}}{\mathrm{8}}\mathrm{64}{x}^{\mathrm{3}} +... \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:=\:\:\mathrm{1}+\mathrm{2}{x}+\mathrm{12}{x}^{\mathrm{2}} +\mathrm{120}{x}^{\mathrm{3}} +.. \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\:\mathrm{1}+\frac{\mathrm{2}!}{\mathrm{1}!}{x}+\frac{\mathrm{4}!}{\mathrm{2}!}{x}^{\mathrm{2}} +\frac{\mathrm{6}!}{\mathrm{3}!}{x}^{\mathrm{3}} +..=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}{x}^{{n}} \right] \\ $$

Answered by Dwaipayan Shikari last updated on 19/Nov/20

sin^(−1) x=∫(1/( (√(1−x^2 ))))dx  sin^(−1) x=∫1+(x^2 /2)+(3/4)x^4 +((15)/8)x^6 +..  sin^(−1) x=x+(x^3 /6)+((3x^5 )/(20))+((15)/(56))x^7 +...  sin^(−1) 1=1+(1/6)+(3/(20))+((15)/(56))+...  (π/2) =  1+((2!)/(4.3))+((4!)/(2.16.5))+((6!)/(3!4^2 .7))+..     =Σ_(n=0) ^∞ ( (((2n)),(n) )/4^n ).(1/(2n+1))

$${sin}^{−\mathrm{1}} {x}=\int\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}{dx} \\ $$$${sin}^{−\mathrm{1}} {x}=\int\mathrm{1}+\frac{{x}^{\mathrm{2}} }{\mathrm{2}}+\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{4}} +\frac{\mathrm{15}}{\mathrm{8}}{x}^{\mathrm{6}} +.. \\ $$$${sin}^{−\mathrm{1}} {x}={x}+\frac{{x}^{\mathrm{3}} }{\mathrm{6}}+\frac{\mathrm{3}{x}^{\mathrm{5}} }{\mathrm{20}}+\frac{\mathrm{15}}{\mathrm{56}}{x}^{\mathrm{7}} +... \\ $$$${sin}^{−\mathrm{1}} \mathrm{1}=\mathrm{1}+\frac{\mathrm{1}}{\mathrm{6}}+\frac{\mathrm{3}}{\mathrm{20}}+\frac{\mathrm{15}}{\mathrm{56}}+... \\ $$$$\frac{\pi}{\mathrm{2}}\:=\:\:\mathrm{1}+\frac{\mathrm{2}!}{\mathrm{4}.\mathrm{3}}+\frac{\mathrm{4}!}{\mathrm{2}.\mathrm{16}.\mathrm{5}}+\frac{\mathrm{6}!}{\mathrm{3}!\mathrm{4}^{\mathrm{2}} .\mathrm{7}}+.. \\ $$$$\:\:\:=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\begin{pmatrix}{\mathrm{2}{n}}\\{{n}}\end{pmatrix}}{\mathrm{4}^{{n}} }.\frac{\mathrm{1}}{\mathrm{2}{n}+\mathrm{1}} \\ $$

Commented by mnjuly1970 last updated on 19/Nov/20

mercey mr payan.

$${mercey}\:{mr}\:{payan}. \\ $$

Commented by Dwaipayan Shikari last updated on 19/Nov/20

With pleasure

$${With}\:{pleasure} \\ $$$$ \\ $$

Answered by mnjuly1970 last updated on 19/Nov/20

solution ii  in  (i): 4x=t^2     (1/( (√(1−t^2 ))))=Σ_(n=0) ^∞ [ (((2n)),(( n)) ) (t^(2n) /4^n )]    ∫_0 ^( x) (1/( (√(1−t^2 ))))dt=Σ_(n≥0) { (((2n)),(( n)) ) [(t^(2n+1) /((2n+1)4^n ))]_0 ^x }          Arcsin(x)=Σ_(n=0) ^∞  (((2n)),(( n)) ) (x^(2n+1) /((2n+1)4^n ))   x=1 ::   (π/2) =Σ[ (((2n)),(( n)) ) (1/((2n+1)4^n )) ] ✓

$${solution}\:{ii} \\ $$$${in}\:\:\left({i}\right):\:\mathrm{4}{x}={t}^{\mathrm{2}} \\ $$$$\:\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\left[\begin{pmatrix}{\mathrm{2}{n}}\\{\:{n}}\end{pmatrix}\:\frac{{t}^{\mathrm{2}{n}} }{\mathrm{4}^{{n}} }\right] \\ $$$$\:\:\int_{\mathrm{0}} ^{\:{x}} \frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{t}^{\mathrm{2}} }}{dt}=\underset{{n}\geqslant\mathrm{0}} {\sum}\left\{\begin{pmatrix}{\mathrm{2}{n}}\\{\:{n}}\end{pmatrix}\:\left[\frac{{t}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{4}^{{n}} }\right]_{\mathrm{0}} ^{{x}} \right\} \\ $$$$ \\ $$$$\:\:\:\:\:\:{Arcsin}\left({x}\right)=\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\begin{pmatrix}{\mathrm{2}{n}}\\{\:{n}}\end{pmatrix}\:\frac{{x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{4}^{{n}} } \\ $$$$\:{x}=\mathrm{1}\:::\:\:\:\frac{\pi}{\mathrm{2}}\:=\Sigma\left[\begin{pmatrix}{\mathrm{2}{n}}\\{\:{n}}\end{pmatrix}\:\frac{\mathrm{1}}{\left(\mathrm{2}{n}+\mathrm{1}\right)\mathrm{4}^{{n}} }\:\right]\:\checkmark \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com