All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 122708 by mathdave last updated on 19/Nov/20
solve∫0π4ln(2+tan2x)dx
Commented by Dwaipayan Shikari last updated on 19/Nov/20
∫0π4log(2+tan2x)dxtanx=2t⇒sec2x=2dtdx∫012log(2+2t2)2t2+1dt=2∫012log(2)2t2+1+log(1+t2)2t2+1dt=[log(2)tan−12t]012+2∫012log(1+t2)2t2+1dt=π4log(2)+2I(a)I(a)=∫012log(1+at2)2t2+1dtI′(a)=∫012t2(2t2+1)(at2+1)dtI′(a)=1a−2∫01212t2+1−1at2+1dtI′(a)=12(a−2)[tan−12t]012−[1a(a−2)tan−1at]012I′(a)=π42(a−2)−tan−1a2a(a−2)I(a)=12∫π4(a−2)−tan−1a2a2(a−2).....
Terms of Service
Privacy Policy
Contact: info@tinkutara.com