Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122708 by mathdave last updated on 19/Nov/20

solve  ∫_0 ^(π/4) ln(2+tan^2 x)dx

solve0π4ln(2+tan2x)dx

Commented by Dwaipayan Shikari last updated on 19/Nov/20

∫_0 ^(π/4) log(2+tan^2 x)dx         tanx=(√2)t⇒sec^2 x=(√2)(dt/dx)  ∫_0 ^(1/( (√2))) ((log(2+2t^2 ))/(2t^2 +1))dt  =(√2)∫_0 ^(1/( (√2))) ((log(2))/(2t^2 +1))+((log(1+t^2 ))/(2t^2 +1))dt  =[log(2)tan^(−1) (√2)t]_0 ^(1/( (√2))) +(√2)∫_0 ^(1/( (√2))) ((log(1+t^2 ))/(2t^2 +1))dt  =(π/4)log(2)+(√2)I(a)  I(a)=∫_0 ^(1/( (√2))) ((log(1+at^2 ))/(2t^2 +1))dt  I′(a)=∫_0 ^(1/( (√2))) (t^2 /((2t^2 +1)(at^2 +1)))dt  I′(a)=(1/(a−2))∫_0 ^(1/( (√2))) (1/(2t^2 +1))−(1/(at^2 +1))dt  I′(a)=(1/( (√2)(a−2)))[tan^(−1) (√2)t]_0 ^(1/( (√2))) −[(1/( (√a)(a−2)))tan^(−1) (√a)t]_0 ^(1/( (√2)))   I′(a)=(π/( 4(√2)(a−2)))−((tan^(−1) (√(a/2)))/( (√a)(a−2)))  I(a)=(1/( (√2)))∫(π/(4(a−2)))−((tan^(−1) (√(a/2)))/( (√(a/2))(a−2))).....

0π4log(2+tan2x)dxtanx=2tsec2x=2dtdx012log(2+2t2)2t2+1dt=2012log(2)2t2+1+log(1+t2)2t2+1dt=[log(2)tan12t]012+2012log(1+t2)2t2+1dt=π4log(2)+2I(a)I(a)=012log(1+at2)2t2+1dtI(a)=012t2(2t2+1)(at2+1)dtI(a)=1a201212t2+11at2+1dtI(a)=12(a2)[tan12t]012[1a(a2)tan1at]012I(a)=π42(a2)tan1a2a(a2)I(a)=12π4(a2)tan1a2a2(a2).....

Terms of Service

Privacy Policy

Contact: info@tinkutara.com