Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 122721 by bemath last updated on 19/Nov/20

  lim_(x→1)  (((1+x)/(2+x)))^((1−(√x))/(1−x))  =?

$$\:\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\right)^{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−{x}}} \:=?\: \\ $$

Answered by Dwaipayan Shikari last updated on 19/Nov/20

lim_(x→1) (((1+x)/(2+x)))^((1−(√x))/((1+(√x))(1−(√x))))   lim_(x→1) ((2/3))^(1/2) =(√(2/3))

$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\right)^{\frac{\mathrm{1}−\sqrt{{x}}}{\left(\mathrm{1}+\sqrt{{x}}\right)\left(\mathrm{1}−\sqrt{{x}}\right)}} \\ $$$$\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$

Answered by liberty last updated on 19/Nov/20

 Solve lim_(x→1) (((1+x)/(2+x)))^((1−(√x))/(1−x))  ?   Solution :    denote h(x)=((1+x)/(2+x)) ; r(x)=((1−(√x))/(1−x))    { ((lim_(x→1)  h(x)= (2/3))),((lim_(x→1)  r(x)=lim_(x→1)  ((1−(√x))/((1+(√x))(1−(√x))))=(1/2))) :}  but at finite limits lim_(x→a)  h(x) = A>0 ,  lim_(x→a)  r(x)= B the following relation  holds true : lim_(x→a)  (h(x))^(r(x))  = e^(lim_(x→a)  r(x).ln h(x)) = e^(B.ln A)    = A^B . Hence lim_(x→1)  (((1+x)/(2+x)))^((1−(√x))/(1−x)) = ((2/3))^(1/2) =(√(2/3))  Note: If in handling examples of the  form lim_(x→1)  (h(x))^(r(x))  it turns out  that lim_(x→a)  h(x)=1 and lim_(x→a)  r(x)=∞ ,  then the following transformation  may be recomended :   lim_(x→a)  [ h(x)]^(r(x))  = lim_(x→a)  {1+[ h(x)−1] }^(r(x))   = lim_(x→a)  {[1+(h(x)−1)]^(1/(h(x)−1))  }^(r(x)[h(x)−1 ])   = e^(lim_(x→a)  r(x) [h(x)−1 ] ) . ▲

$$\:{Solve}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\left(\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\right)^{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−{x}}} \:? \\ $$$$\:{Solution}\::\: \\ $$$$\:{denote}\:{h}\left({x}\right)=\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\:;\:{r}\left({x}\right)=\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−{x}} \\ $$$$\:\begin{cases}{\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{h}\left({x}\right)=\:\frac{\mathrm{2}}{\mathrm{3}}}\\{\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:{r}\left({x}\right)=\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\frac{\mathrm{1}−\sqrt{{x}}}{\left(\mathrm{1}+\sqrt{{x}}\right)\left(\mathrm{1}−\sqrt{{x}}\right)}=\frac{\mathrm{1}}{\mathrm{2}}}\end{cases} \\ $$$${but}\:{at}\:{finite}\:{limits}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{h}\left({x}\right)\:=\:{A}>\mathrm{0}\:, \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{r}\left({x}\right)=\:{B}\:{the}\:{following}\:{relation} \\ $$$${holds}\:{true}\::\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\left({h}\left({x}\right)\right)^{{r}\left({x}\right)} \:=\:{e}^{\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{r}\left({x}\right).\mathrm{ln}\:{h}\left({x}\right)} =\:{e}^{{B}.\mathrm{ln}\:{A}} \\ $$$$\:=\:{A}^{{B}} .\:{Hence}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left(\frac{\mathrm{1}+{x}}{\mathrm{2}+{x}}\right)^{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}−{x}}} =\:\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} =\sqrt{\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$${Note}:\:{If}\:{in}\:{handling}\:{examples}\:{of}\:{the} \\ $$$${form}\:\underset{{x}\rightarrow\mathrm{1}} {\mathrm{lim}}\:\left({h}\left({x}\right)\right)^{{r}\left({x}\right)} \:{it}\:{turns}\:{out} \\ $$$${that}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{h}\left({x}\right)=\mathrm{1}\:{and}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{r}\left({x}\right)=\infty\:, \\ $$$${then}\:{the}\:{following}\:{transformation} \\ $$$${may}\:{be}\:{recomended}\::\: \\ $$$$\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\left[\:{h}\left({x}\right)\right]^{{r}\left({x}\right)} \:=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\left\{\mathrm{1}+\left[\:{h}\left({x}\right)−\mathrm{1}\right]\:\right\}^{{r}\left({x}\right)} \\ $$$$=\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:\left\{\left[\mathrm{1}+\left({h}\left({x}\right)−\mathrm{1}\right)\right]^{\frac{\mathrm{1}}{{h}\left({x}\right)−\mathrm{1}}} \:\right\}^{{r}\left({x}\right)\left[{h}\left({x}\right)−\mathrm{1}\:\right]} \\ $$$$=\:{e}^{\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{r}\left({x}\right)\:\left[{h}\left({x}\right)−\mathrm{1}\:\right]\:} .\:\blacktriangle \\ $$$$ \\ $$

Commented by liberty last updated on 19/Nov/20

for example find the limit :  lim_(x→∞)  (((2x^2 +8)/(2x^2 −5)))^(6x^2 +5) ?  Solution : let us denote :   h(x)=((2x^2 +8)/(2x^2 −5)) ; r(x)=6x^2 +5    lim_(x→∞)  h(x)= lim_(x→∞)  ((2x^2 +8)/(2x^2 −5)) = 1    lim_(x→∞)  r(x)= lim_(x→∞) (6x^2 +5)=∞    use the formula lim_(x→∞)  (((2x^2 +8)/(2x^2 −5)))^(6x^2 +5)    = e^(lim_(x→∞) r(x) [h(x)−1 ]) ; [ h(x)−1=((13)/(2x^2 −5)) ]  = e^(lim_(x→∞) (((13(6x^2 +5))/(2x^2 −5))))  = e^(39) . ✓▲

$${for}\:{example}\:{find}\:{the}\:{limit}\:: \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}}\right)^{\mathrm{6}{x}^{\mathrm{2}} +\mathrm{5}} ? \\ $$$${Solution}\::\:{let}\:{us}\:{denote}\::\: \\ $$$${h}\left({x}\right)=\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}}\:;\:{r}\left({x}\right)=\mathrm{6}{x}^{\mathrm{2}} +\mathrm{5}\: \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{h}\left({x}\right)=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}}\:=\:\mathrm{1}\: \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{r}\left({x}\right)=\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\mathrm{6}{x}^{\mathrm{2}} +\mathrm{5}\right)=\infty\: \\ $$$$\:{use}\:{the}\:{formula}\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{2}{x}^{\mathrm{2}} +\mathrm{8}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}}\right)^{\mathrm{6}{x}^{\mathrm{2}} +\mathrm{5}} \\ $$$$\:=\:{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}{r}\left({x}\right)\:\left[{h}\left({x}\right)−\mathrm{1}\:\right]} ;\:\left[\:{h}\left({x}\right)−\mathrm{1}=\frac{\mathrm{13}}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}}\:\right] \\ $$$$=\:{e}^{\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left(\frac{\mathrm{13}\left(\mathrm{6}{x}^{\mathrm{2}} +\mathrm{5}\right)}{\mathrm{2}{x}^{\mathrm{2}} −\mathrm{5}}\right)} \:=\:{e}^{\mathrm{39}} .\:\checkmark\blacktriangle \\ $$

Commented by bemath last updated on 19/Nov/20

waww...gave kudos

$${waww}...{gave}\:{kudos} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com