Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122739 by mohammad17 last updated on 19/Nov/20

1)∫_(−π) ^( π) (dx/(sin^2 x+1))    2) ∫_(−∞) ^( ∞) (x^2 /(x^4 +5x^2 +4))dx

1)ππdxsin2x+12)x2x4+5x2+4dx

Answered by Dwaipayan Shikari last updated on 19/Nov/20

∫_(−∞) ^∞ (x^2 /((x^4 +5x^2 +4)))dx  =∫_(−∞) ^∞ (x^2 /((x^2 +4)(x^2 +1)))dx  =−(1/3)∫_(−∞) ^∞ (1/(x^2 +1))−(4/(x^2 +4))=−(1/3)(π−2π)=(π/3)

x2(x4+5x2+4)dx=x2(x2+4)(x2+1)dx=131x2+14x2+4=13(π2π)=π3

Commented by mohammad17 last updated on 19/Nov/20

thank you mis

thankyoumis

Answered by MJS_new last updated on 19/Nov/20

∫(dx/(1+sin^2  x))=       [t=tan x → dx=(dt/(t^2 +1))]  =∫(dt/(2t^2 +1))=((√2)/2)arctan ((√2)t) =  =((√2)/2)arctan ((√2)tan x) +C  ∫_(−π) ^π (dx/(1+sin^2  x))=4∫_0 ^(π/2) (dx/(1+sin^2  x))  ⇒ answer is π(√2)

dx1+sin2x=[t=tanxdx=dtt2+1]=dt2t2+1=22arctan(2t)==22arctan(2tanx)+Cππdx1+sin2x=4π/20dx1+sin2xanswerisπ2

Commented by mohammad17 last updated on 19/Nov/20

put sir answer (√(2π))

putsiranswer2π

Commented by MJS_new last updated on 19/Nov/20

sorry you′re right, I corrected my result

sorryyoureright,Icorrectedmyresult

Commented by mohammad17 last updated on 19/Nov/20

now its right

nowitsright

Answered by bemath last updated on 19/Nov/20

(1) let tan ((x/2)) = v ⇒ dx = 2cos^2 ((x/2)) dv   so ∫ (2/(1+v^2 )). (((1+v^2 )^2 )/(v^4 +6v^2 +1)) dv    ∫ ((2(1+v^2 ))/(v^4 +6v^2 +9−8)) dv = ∫ ((2(1+v^2 ))/((v^2 +3)^2 −8)) dv  ∫ ((2(1+v^2 ))/((v^2 +3−(√8))(v^2 +3+(√8)))) dv  continue..

(1)lettan(x2)=vdx=2cos2(x2)dvso21+v2.(1+v2)2v4+6v2+1dv2(1+v2)v4+6v2+98dv=2(1+v2)(v2+3)28dv2(1+v2)(v2+38)(v2+3+8)dvcontinue..

Answered by Bird last updated on 19/Nov/20

1) I = ∫_(−π) ^π  (dx/(sin^2 x +1)) ⇒  I =∫_(−π) ^π  (dx/(((1−cos(2x))/2)+1))  =∫_(−π) ^π  ((2dx)/(3−cos(2x)))  =_(2x=t)     ∫_(−2π) ^(2π)   (dt/(3−cost))  =2 ∫_0 ^(2π)   (dt/(3−cost))  =_(z=e^(it) )    2 ∫_(∣z∣=1)       (dz/(iz(3−((z+z^(−1) )/2))))  =−4i∫_(∣z∣=1)    (dz/(z(6−z−z^(−1) )))  =−4i∫_(∣z∣=1)     (dz/(6z−z^2 −1))  =∫_(∣z∣=1)    ((4idz)/(z^2 −6z+1))  ϕ(z)=((4i)/(z^2 −6z +1))  Δ^′  =9−1=8 ⇒z_1 =3+2(√2)  z_2 =3−2(√2)  ϕ(z) =((4i)/((z−z_1 )(z−z_2 )))  ∣z_1 ∣−1 =3+2(√2)−1 =2+2(√2)>0  ∣z_2 ∣−1 =3−2(√2)−1=2−2(√2)<0  ⇒∫_(∣z∣=1)   ϕ(z)dz =2iπ Res(ϕ,z_2 )  =2iπ×((4i)/((z_2 −z_1 ))) =((−8π)/(−4(√2))) =((2π)/( (√2)))  =((2π(√2))/2) =π(√2) ⇒ I =π(√2)

1)I=ππdxsin2x+1I=ππdx1cos(2x)2+1=ππ2dx3cos(2x)=2x=t2π2πdt3cost=202πdt3cost=z=eit2z∣=1dziz(3z+z12)=4iz∣=1dzz(6zz1)=4iz∣=1dz6zz21=z∣=14idzz26z+1φ(z)=4iz26z+1Δ=91=8z1=3+22z2=322φ(z)=4i(zz1)(zz2)z11=3+221=2+22>0z21=3221=222<0z∣=1φ(z)dz=2iπRes(φ,z2)=2iπ×4i(z2z1)=8π42=2π2=2π22=π2I=π2

Answered by mathmax by abdo last updated on 20/Nov/20

2) A =∫_(−∞) ^(+∞)  (x^2 /(x^4  +5x^2  +4))dx let decompose F(u)=(u/(u^2  +5u+4))  Δ=25−16 =9 ⇒u_1 =((−5+3)/2)=−1 and u_2 =((−5−3)/2)=−4 ⇒  F(u) =(u/((u+1)(u+4))) =(1/3)u((1/(u+1))−(1/(u+4)))=(1/3)((u/(u+1))−(u/(u+4)))  =(1/3)(((u+1−1)/(u+1))−((u+4−4)/(u+4)))=(1/3)(1−(1/(u+1))−1+(4/(u+4)))=(1/3)((4/(u+4))−(1/(u+1)))  ⇒A =(1/3)∫_(−∞) ^(+∞) {(4/(x^2 +4))−(1/(x^2  +1))}dx  =(4/3)∫_(−∞) ^(+∞)  (dx/(x^2  +4))−(1/3)∫_(−∞) ^(+∞)  (dx/(x^2  +1))dx  we have  ∫_(−∞) ^(+∞)  (dx/(x^2  +4))=2iπ Res(f,2i) =2iπ×(1/(4i)) =(π/2)  ∫_(−∞) ^(+∞)  (dx/(x^2  +1))dx =2iπ Res(f,i) =2iπ.(1/(2i))=π ⇒  A =(4/3).(π/2)−(π/3) =((2π)/3)−(π/3) ⇒ A =(π/3)

2)A=+x2x4+5x2+4dxletdecomposeF(u)=uu2+5u+4Δ=2516=9u1=5+32=1andu2=532=4F(u)=u(u+1)(u+4)=13u(1u+11u+4)=13(uu+1uu+4)=13(u+11u+1u+44u+4)=13(11u+11+4u+4)=13(4u+41u+1)A=13+{4x2+41x2+1}dx=43+dxx2+413+dxx2+1dxwehave+dxx2+4=2iπRes(f,2i)=2iπ×14i=π2+dxx2+1dx=2iπRes(f,i)=2iπ.12i=πA=43.π2π3=2π3π3A=π3

Terms of Service

Privacy Policy

Contact: info@tinkutara.com