Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122748 by bemath last updated on 19/Nov/20

  ∫_0 ^3  (dx/((3−x)(√(x^2 +1)))) ?

30dx(3x)x2+1?

Answered by MJS_new last updated on 19/Nov/20

∫(dx/((3−x)(√(x^2 +1))))=       [t=x+(√(x^2 +1)) → dx=((√(x^2 +1))/(x+(√(x^2 +1))))]  =−2∫(dt/(t^2 −6t−1))=−2∫(dt/((t−3+(√(10)))(t−3+(√(10)))))=  =((√(10))/(10))∫((1/(t−3+(√(10))))−(1/(t−3−(√(10)))))dt=  =((√(10))/(10))ln ((t−3+(√(10)))/(t−3−(√(10)))) =  =((√(10))/(10))ln ∣(( 3x+1+(√(10(x^2 +1))))/(3−x))∣ +C  ∫_0 ^3 ... doesn′t converge

dx(3x)x2+1=[t=x+x2+1dx=x2+1x+x2+1]=2dtt26t1=2dt(t3+10)(t3+10)==1010(1t3+101t310)dt==1010lnt3+10t310==1010ln3x+1+10(x2+1)3x+C30...doesntconverge

Answered by liberty last updated on 19/Nov/20

since lim_(x→3^− )  (3−x).(1/((3−x)(√(x^2 +1)))) = (1/( (√(10))))  it follows that ∫_0 ^3  (dx/((3−x)(√(x^2 +1)))) diverges

sincelimx3(3x).1(3x)x2+1=110itfollowsthat30dx(3x)x2+1diverges

Answered by Bird last updated on 19/Nov/20

A =∫_0 ^3  (dx/((3−x)(√(x^2  +1)))) we do the  changement x=sht ⇒  A =∫_0 ^(argsh(3))   ((cht)/((3−sht)cht))dt  =∫_0 ^(ln(3+(√(10))))     (dt/(3−((e^t −e^(−t) )/2)))  =∫_0 ^(ln(3+(√(10))))  ((2dt)/(6−e^t  +e^(−t) ))  =_(e^t  =x)     ∫_1 ^(3+(√(10)))     ((2dx)/(x(6−x+x^(−1) )))  =2 ∫_1 ^(3+(√(10)))      (dx/(6x−x^2 +1))  =−2∫_1 ^(3+(√(10)))     (dx/(x^2 −6x−1))  Δ^′  =9+1=10 ⇒x_1 =3+(√(10))  x_2 =3−(√(10)) ⇒  I =−2 ∫_1 ^(3+(√(10)))     (dx/((x−3−(√(10)))(x−3+(√(10)))))  =−(2/(2(√(10)))) ∫_1 ^(3+(√(10)))    ((1/(x−3−(√(10))))−(1/(x−3+(√(10)))))dx  =−(1/( (√(10))))[ln∣((x−3−(√(10)))/(x−3+(√(10))))∣]_1 ^(3+(√(10)))  =−∞  this integral dkverges..(√!)

A=03dx(3x)x2+1wedothechangementx=shtA=0argsh(3)cht(3sht)chtdt=0ln(3+10)dt3etet2=0ln(3+10)2dt6et+et=et=x13+102dxx(6x+x1)=213+10dx6xx2+1=213+10dxx26x1Δ=9+1=10x1=3+10x2=310I=213+10dx(x310)(x3+10)=221013+10(1x3101x3+10)dx=110[lnx310x3+10]13+10=thisintegraldkverges..!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com