All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122748 by bemath last updated on 19/Nov/20
∫30dx(3−x)x2+1?
Answered by MJS_new last updated on 19/Nov/20
∫dx(3−x)x2+1=[t=x+x2+1→dx=x2+1x+x2+1]=−2∫dtt2−6t−1=−2∫dt(t−3+10)(t−3+10)==1010∫(1t−3+10−1t−3−10)dt==1010lnt−3+10t−3−10==1010ln∣3x+1+10(x2+1)3−x∣+C∫30...doesn′tconverge
Answered by liberty last updated on 19/Nov/20
sincelimx→3−(3−x).1(3−x)x2+1=110itfollowsthat∫30dx(3−x)x2+1diverges
Answered by Bird last updated on 19/Nov/20
A=∫03dx(3−x)x2+1wedothechangementx=sht⇒A=∫0argsh(3)cht(3−sht)chtdt=∫0ln(3+10)dt3−et−e−t2=∫0ln(3+10)2dt6−et+e−t=et=x∫13+102dxx(6−x+x−1)=2∫13+10dx6x−x2+1=−2∫13+10dxx2−6x−1Δ′=9+1=10⇒x1=3+10x2=3−10⇒I=−2∫13+10dx(x−3−10)(x−3+10)=−2210∫13+10(1x−3−10−1x−3+10)dx=−110[ln∣x−3−10x−3+10∣]13+10=−∞thisintegraldkverges..!
Terms of Service
Privacy Policy
Contact: info@tinkutara.com