Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 12279 by chux last updated on 17/Apr/17

i guess i posted this question but  didnt really get much response.  pls help out    if 8log_2  x + (x−1)log_x  2 =3^x    find x.

$$\mathrm{i}\:\mathrm{guess}\:\mathrm{i}\:\mathrm{posted}\:\mathrm{this}\:\mathrm{question}\:\mathrm{but} \\ $$$$\mathrm{didnt}\:\mathrm{really}\:\mathrm{get}\:\mathrm{much}\:\mathrm{response}. \\ $$$$\mathrm{pls}\:\mathrm{help}\:\mathrm{out} \\ $$$$ \\ $$$$\mathrm{if}\:\mathrm{8log}_{\mathrm{2}} \:\mathrm{x}\:+\:\left(\mathrm{x}−\mathrm{1}\right)\mathrm{log}_{\mathrm{x}} \:\mathrm{2}\:=\mathrm{3}^{\mathrm{x}} \: \\ $$$$\mathrm{find}\:\mathrm{x}. \\ $$

Commented by mrW1 last updated on 17/Apr/17

there is no analytical solution for  such equation. by trial and error you  can see that x=2 is a solution. using  graphical method you can find the  other solution x≈1.3853.

$${there}\:{is}\:{no}\:{analytical}\:{solution}\:{for} \\ $$$${such}\:{equation}.\:{by}\:{trial}\:{and}\:{error}\:{you} \\ $$$${can}\:{see}\:{that}\:{x}=\mathrm{2}\:{is}\:{a}\:{solution}.\:{using} \\ $$$${graphical}\:{method}\:{you}\:{can}\:{find}\:{the} \\ $$$${other}\:{solution}\:{x}\approx\mathrm{1}.\mathrm{3853}. \\ $$

Commented by mrW1 last updated on 18/Apr/17

the newton raphson iteration to solve  f(x)=0 is:  if you have a start value x_0  for the solution,  you can get a better value with  x_(n+1) =x_n −((f(x_n ))/(f′(x_n )))     (n=1,2,3....)  you repeat this till x_(n+1) −x_n  is small  enough for you.    your case is not good for demonstration.  let us see f(x)=sin x−0.4=0  f′(x)=cos x  x_0 =0.4  x_1 =0.4−((sin 0.4−0.4)/(cos 0.4))=0.411488553  x_2 =0.411488553−((sin 0.411488553−0.4)/(cos 0.411488553))=0.411516846  x_3 =....=0.411516846≈x_2   we get after 3 iterations a good solution  for sin x−0.4=0:   x≈0.411516846

$${the}\:\mathrm{newton}\:\mathrm{raphson}\:\mathrm{iteration}\:{to}\:{solve} \\ $$$${f}\left({x}\right)=\mathrm{0}\:{is}: \\ $$$${if}\:{you}\:{have}\:{a}\:{start}\:{value}\:{x}_{\mathrm{0}} \:{for}\:{the}\:{solution}, \\ $$$${you}\:{can}\:{get}\:{a}\:{better}\:{value}\:{with} \\ $$$${x}_{{n}+\mathrm{1}} ={x}_{{n}} −\frac{{f}\left({x}_{{n}} \right)}{{f}'\left({x}_{{n}} \right)}\:\:\:\:\:\left({n}=\mathrm{1},\mathrm{2},\mathrm{3}....\right) \\ $$$${you}\:{repeat}\:{this}\:{till}\:{x}_{{n}+\mathrm{1}} −{x}_{{n}} \:{is}\:{small} \\ $$$${enough}\:{for}\:{you}. \\ $$$$ \\ $$$${your}\:{case}\:{is}\:{not}\:{good}\:{for}\:{demonstration}. \\ $$$${let}\:{us}\:{see}\:{f}\left({x}\right)=\mathrm{sin}\:{x}−\mathrm{0}.\mathrm{4}=\mathrm{0} \\ $$$${f}'\left({x}\right)=\mathrm{cos}\:{x} \\ $$$${x}_{\mathrm{0}} =\mathrm{0}.\mathrm{4} \\ $$$${x}_{\mathrm{1}} =\mathrm{0}.\mathrm{4}−\frac{\mathrm{sin}\:\mathrm{0}.\mathrm{4}−\mathrm{0}.\mathrm{4}}{\mathrm{cos}\:\mathrm{0}.\mathrm{4}}=\mathrm{0}.\mathrm{411488553} \\ $$$${x}_{\mathrm{2}} =\mathrm{0}.\mathrm{411488553}−\frac{\mathrm{sin}\:\mathrm{0}.\mathrm{411488553}−\mathrm{0}.\mathrm{4}}{\mathrm{cos}\:\mathrm{0}.\mathrm{411488553}}=\mathrm{0}.\mathrm{411516846} \\ $$$${x}_{\mathrm{3}} =....=\mathrm{0}.\mathrm{411516846}\approx{x}_{\mathrm{2}} \\ $$$${we}\:{get}\:{after}\:\mathrm{3}\:{iterations}\:{a}\:{good}\:{solution} \\ $$$${for}\:\mathrm{sin}\:{x}−\mathrm{0}.\mathrm{4}=\mathrm{0}:\: \\ $$$${x}\approx\mathrm{0}.\mathrm{411516846} \\ $$

Commented by chux last updated on 18/Apr/17

thanks sir..... a friend told me about  a method called newton raphson  iteration but i dnt knw how it can  be applied.... please can you   explain the method and applicatn  to thiz question if possible....      thanx for always helping.

$$\mathrm{thanks}\:\mathrm{sir}.....\:\mathrm{a}\:\mathrm{friend}\:\mathrm{told}\:\mathrm{me}\:\mathrm{about} \\ $$$$\mathrm{a}\:\mathrm{method}\:\mathrm{called}\:\mathrm{newton}\:\mathrm{raphson} \\ $$$$\mathrm{iteration}\:\mathrm{but}\:\mathrm{i}\:\mathrm{dnt}\:\mathrm{knw}\:\mathrm{how}\:\mathrm{it}\:\mathrm{can} \\ $$$$\mathrm{be}\:\mathrm{applied}....\:\mathrm{please}\:\mathrm{can}\:\mathrm{you}\: \\ $$$$\mathrm{explain}\:\mathrm{the}\:\mathrm{method}\:\mathrm{and}\:\mathrm{applicatn} \\ $$$$\mathrm{to}\:\mathrm{thiz}\:\mathrm{question}\:\mathrm{if}\:\mathrm{possible}.... \\ $$$$ \\ $$$$ \\ $$$$\mathrm{thanx}\:\mathrm{for}\:\mathrm{always}\:\mathrm{helping}. \\ $$

Commented by chux last updated on 18/Apr/17

thanks boss

$$\mathrm{thanks}\:\mathrm{boss} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com