Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 122791 by mohammad17 last updated on 19/Nov/20

Answered by mathmax by abdo last updated on 19/Nov/20

I =∫_0 ^∞   ((cos(mx))/((x^2 +1)^2 ))dx ⇒ 2I =∫_(−∞) ^(+∞)  ((cos(mx))/((x^2  +1)^2 ))dx =Res(∫_(−∞) ^(+∞)  (e^(imx) /((x^2  +1)^2 ))dx)  let ϕ(z)=(e^(imz) /((z^2  +1)^2 ))  we have lim_(z→∞) ∣zϕ(z)∣=0 and  ϕ(z) =(e^(imz) /((z−i)^2 (z+i)^2 )) [rssidus theorem give  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ Res(ϕ,i)  and Res(ϕ,i)=lim_(z→i) (1/((2−1)!))  {(z−i)^2 ϕ(z)}^((1))   =lim_(z→i)    {(e^(imz) /((z+i)^2 ))}^((1))  =lim_(z→i)     ((ime^(imz) (z+i)^2 −2(z+i)e^(imz) )/((z+i)^4 ))  =lim_(z→i)     ((ime^(imz) (z+i)−2e^(imz) )/((z+i)^3 )) =lim_(z→i)    (((im(z+i)−2)e^(imz) )/((z+i)^3 ))  =((2i(im)−2)e^(−m) )/((2i)^3 )) =(((−2m−2)e^(−m) )/(−8i)) =(((m+1)e^(−m) )/(4i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ×(((m+1)e^(−m) )/(4i)) =(π/2)(m+1)e^(−m)  ⇒  2I =(π/2)(m+1)e^(−m)  ⇒★I =(π/4)(m+1)e^(−m) ★

I=0cos(mx)(x2+1)2dx2I=+cos(mx)(x2+1)2dx=Res(+eimx(x2+1)2dx)letφ(z)=eimz(z2+1)2wehavelimzzφ(z)∣=0andφ(z)=eimz(zi)2(z+i)2[rssidustheoremgive+φ(z)dz=2iπRes(φ,i)andRes(φ,i)=limzi1(21)!{(zi)2φ(z)}(1)=limzi{eimz(z+i)2}(1)=limziimeimz(z+i)22(z+i)eimz(z+i)4=limziimeimz(z+i)2eimz(z+i)3=limzi(im(z+i)2)eimz(z+i)3=2i(im)2)em(2i)3=(2m2)em8i=(m+1)em4i+φ(z)dz=2iπ×(m+1)em4i=π2(m+1)em2I=π2(m+1)emI=π4(m+1)em

Answered by TANMAY PANACEA last updated on 19/Nov/20

(1/3)∫_0 ^∞ (((4x^2 +4)−(x^2 +4))/((x^2 +1)(x^2 +4)))dx  (4/3)∫_0 ^∞ (dx/(x^2 +4))−(1/3)∫_0 ^∞ (dx/(x^2 +1))  ∣(4/3)×(1/2)tan^(−1) ((x/2))−(1/3)tan^(−1) x∣_ ^∞   (2/3)×(π/2)−(1/3)×(π/2)=(π/6)

130(4x2+4)(x2+4)(x2+1)(x2+4)dx430dxx2+4130dxx2+143×12tan1(x2)13tan1x23×π213×π2=π6

Commented by mohammad17 last updated on 19/Nov/20

thank you mis

thankyoumis

Answered by mathmax by abdo last updated on 19/Nov/20

A =∫_0 ^∞   ((sin^2 x)/x^2 ) dx  by parts A =[−((sin^2 x)/x)]_0 ^∞ +∫_0 ^∞ ((2sinx cosx)/x)dx  =∫_0 ^∞    ((sin(2x))/x)dx =_(2x=t)   ∫_0 ^∞   ((sin(t))/(t/2))×(dt/2) =∫_0 ^∞  ((sint)/t)dt =(π/2)

A=0sin2xx2dxbypartsA=[sin2xx]0+02sinxcosxxdx=0sin(2x)xdx=2x=t0sin(t)t2×dt2=0sinttdt=π2

Answered by mathmax by abdo last updated on 19/Nov/20

4) I =∫_0 ^∞    (x^2 /((x^2  +1)(x^2  +4)))dx ⇒I =(1/2)∫_(−∞) ^(+∞)  (x^2 /((x^2  +1)(x^2  +4)))dx  let ϕ(z)=(z^2 /((z^2  +1)(z^2  +4))) ⇒ϕ(z) =(z^2 /((z−i)(z+i)(z−2i)(z+2i)))  residus theorem →∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,i)+Res(ϕ,2i)}  Res(ϕ,i)=lim_(z→i) (z−i)ϕ(z) =((−1)/(2i(3))) =−(1/(6i))  Res(ϕ,2i) =lim_(z→2i)   (z−2i)ϕ(z) =((−4)/(4i(−3))) =(1/(3i)) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{−(1/(6i))+(1/(3i))} =(π/3) +((2π)/3) =π ⇒ I =(π/2)  error at the question ...!

4)I=0x2(x2+1)(x2+4)dxI=12+x2(x2+1)(x2+4)dxletφ(z)=z2(z2+1)(z2+4)φ(z)=z2(zi)(z+i)(z2i)(z+2i)residustheorem+φ(z)dz=2iπ{Res(φ,i)+Res(φ,2i)}Res(φ,i)=limzi(zi)φ(z)=12i(3)=16iRes(φ,2i)=limz2i(z2i)φ(z)=44i(3)=13i+φ(z)dz=2iπ{16i+13i}=π3+2π3=πI=π2erroratthequestion...!

Answered by mathmax by abdo last updated on 19/Nov/20

A =∫_0 ^∞    ((xsin(ax))/(x^2  +4))dx ⇒ A =(1/2)∫_(−∞) ^(+∞)  ((xsin(ax))/(x^2  +4))dx let  =(1/2) Im(∫_(−∞) ^(+∞)  (x/(x^2  +4))e^(iax)  dx)  let w(z)=((ze^(iaz) )/(z^2  +4))  lim_(z→∞) ∣zw(z)∣=0  and w(z)=((ze^(iaz) )/((z−2i)(z+2i)))  ∫_(−∞) ^(+∞)  W(z)dz =2iπRes(w,2i) =2iπ.((2i e^(ia(2i)) )/(4i)) =iπ e^(−2a)  ⇒  A =(π/2)e^(−2a)       error at the question ′.!

A=0xsin(ax)x2+4dxA=12+xsin(ax)x2+4dxlet=12Im(+xx2+4eiaxdx)letw(z)=zeiazz2+4limzzw(z)∣=0andw(z)=zeiaz(z2i)(z+2i)+W(z)dz=2iπRes(w,2i)=2iπ.2ieia(2i)4i=iπe2aA=π2e2aerroratthequestion.!

Terms of Service

Privacy Policy

Contact: info@tinkutara.com