All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122807 by TITA last updated on 19/Nov/20
Commented by TITA last updated on 19/Nov/20
pleasehelp
Answered by ebi last updated on 20/Nov/20
V=∫∫E∫f(x,y,z)dVvolumeenclosedbyz=x+y,z=0y=x2,x=y2thelimitofzis0⩽z⩽x+y.onxy−plane,theboundedregionisbetweeny=x2andx=y2,thus,thelimitofyisx2⩽y⩽x.now,findingthedomainofx,x=x4⇒x4−x=0⇒x(x3−1)=0x=0orx=1,thus,limitofxis0⩽x⩽1.V=∫∫D∫u1(x,y)u2(x,y)f(x,y,z)dzdAE={(x,y,z)∣(x,y)∈D,0⩽z⩽x+y}D={(x,y)∣0⩽x⩽1,x2⩽y⩽x}V=∫10∫x2x∫0x+yxydzdydxV=∫10∫x2xxyz∣0x+ydydxV=∫10∫x2xx2y+xy2dydxV=∫10x2y22+xy33∣x2xdxV=∫10x32+x523−x62−x73dxV=x48+2x7221−x714−x824∣01V=18+2(1)21−114−124=328
Terms of Service
Privacy Policy
Contact: info@tinkutara.com