Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 122862 by Dwaipayan Shikari last updated on 20/Nov/20

∫_0 ^∞ (x^7 /((1+x)^(10) ))dx

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{7}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{10}} }{dx} \\ $$

Answered by MJS_new last updated on 20/Nov/20

=∫_0 ^∞ Σ_(j=3) ^(10) (((−1)^(j+1)  ((7),((j−3)) ))/((x+1)^j ))=[Σ_(j=3) ^(10) (((−1)^(j+1)  ((7),((j−3)) ))/((j−1)(x+1)^(j−1) ))]_0 ^∞ =  =−Σ_(j=3) ^(10) (((−1)^(j+1)  ((7),((j−3)) ))/((j−1)))=  =(1/2)−(7/3)+((21)/4)−7+((35)/6)−3+(7/8)−(1/9)=(1/(72))

$$=\underset{\mathrm{0}} {\overset{\infty} {\int}}\underset{{j}=\mathrm{3}} {\overset{\mathrm{10}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{j}+\mathrm{1}} \begin{pmatrix}{\mathrm{7}}\\{{j}−\mathrm{3}}\end{pmatrix}}{\left({x}+\mathrm{1}\right)^{{j}} }=\left[\underset{{j}=\mathrm{3}} {\overset{\mathrm{10}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{j}+\mathrm{1}} \begin{pmatrix}{\mathrm{7}}\\{{j}−\mathrm{3}}\end{pmatrix}}{\left({j}−\mathrm{1}\right)\left({x}+\mathrm{1}\right)^{{j}−\mathrm{1}} }\right]_{\mathrm{0}} ^{\infty} = \\ $$$$=−\underset{{j}=\mathrm{3}} {\overset{\mathrm{10}} {\sum}}\frac{\left(−\mathrm{1}\right)^{{j}+\mathrm{1}} \begin{pmatrix}{\mathrm{7}}\\{{j}−\mathrm{3}}\end{pmatrix}}{\left({j}−\mathrm{1}\right)}= \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{7}}{\mathrm{3}}+\frac{\mathrm{21}}{\mathrm{4}}−\mathrm{7}+\frac{\mathrm{35}}{\mathrm{6}}−\mathrm{3}+\frac{\mathrm{7}}{\mathrm{8}}−\frac{\mathrm{1}}{\mathrm{9}}=\frac{\mathrm{1}}{\mathrm{72}} \\ $$

Commented by Dwaipayan Shikari last updated on 20/Nov/20

Great way sir!

$${Great}\:{way}\:{sir}!\: \\ $$

Commented by Dwaipayan Shikari last updated on 20/Nov/20

∫_0 ^∞ (x^7 /((1+x)^(10) ))dx         (x/(1+x))=t⇒(1/((1+x)^2 ))=(dt/dx)  and  1+x=(1/(1−t))  =∫_0 ^1 (x^7 /((1+x)^8 ))dt=∫_0 ^1 t^7 (1−t)dt  =β(8,2)=((Γ(8)Γ(2))/(Γ(10)))=((7!)/(9!))=(1/(72))

$$\int_{\mathrm{0}} ^{\infty} \frac{{x}^{\mathrm{7}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{10}} }{dx}\:\:\:\:\:\:\:\:\:\frac{{x}}{\mathrm{1}+{x}}={t}\Rightarrow\frac{\mathrm{1}}{\left(\mathrm{1}+{x}\right)^{\mathrm{2}} }=\frac{{dt}}{{dx}}\:\:{and}\:\:\mathrm{1}+{x}=\frac{\mathrm{1}}{\mathrm{1}−{t}} \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{x}^{\mathrm{7}} }{\left(\mathrm{1}+{x}\right)^{\mathrm{8}} }{dt}=\int_{\mathrm{0}} ^{\mathrm{1}} {t}^{\mathrm{7}} \left(\mathrm{1}−{t}\right){dt} \\ $$$$=\beta\left(\mathrm{8},\mathrm{2}\right)=\frac{\Gamma\left(\mathrm{8}\right)\Gamma\left(\mathrm{2}\right)}{\Gamma\left(\mathrm{10}\right)}=\frac{\mathrm{7}!}{\mathrm{9}!}=\frac{\mathrm{1}}{\mathrm{72}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com