Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122867 by bemath last updated on 20/Nov/20

Answered by som(math1967) last updated on 20/Nov/20

I=∫_0 ^(π/2) (((√(cosx))dx)/( (√(cosx))+(√(sinx))))  again I=∫_0 ^(π/2) (((√(cos((π/2)−x)))dx)/( (√(cos((π/2)−x)))+(√(sin((π/2)−x)))))  =∫_0 ^(π/2) (((√(sinx))dx)/( (√(sinx))+(√(cosx))))  ∴2I=∫_0 ^(π/2) (((√(sinx))+(√(cosx)))/( (√(sinx))+(√(cosx))))dx  2I=∫_0 ^(π/2) dx=(π/2)−0  ∴I=(π/4) ans

$$\mathrm{I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{cosx}}\mathrm{dx}}{\:\sqrt{\mathrm{cosx}}+\sqrt{\mathrm{sinx}}} \\ $$$$\mathrm{again}\:\mathrm{I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}\mathrm{dx}}{\:\sqrt{\mathrm{cos}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}+\sqrt{\mathrm{sin}\left(\frac{\pi}{\mathrm{2}}−\mathrm{x}\right)}} \\ $$$$=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{sinx}}\mathrm{dx}}{\:\sqrt{\mathrm{sinx}}+\sqrt{\mathrm{cosx}}} \\ $$$$\therefore\mathrm{2I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\frac{\sqrt{\mathrm{sinx}}+\sqrt{\mathrm{cosx}}}{\:\sqrt{\mathrm{sinx}}+\sqrt{\mathrm{cosx}}}\mathrm{dx} \\ $$$$\mathrm{2I}=\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{dx}=\frac{\pi}{\mathrm{2}}−\mathrm{0} \\ $$$$\therefore\mathrm{I}=\frac{\pi}{\mathrm{4}}\:\mathrm{ans} \\ $$

Answered by liberty last updated on 20/Nov/20

φ =∫_0 ^(π/2) (1/(1+(√(tan x)))) dx   using the interval inversion substitution  that replaces x with (π/2)−x , we get   φ =∫_0 ^(π/2)  (1/(1+(√(cot x)))) dx = ∫_0 ^(π/2) ((√(tan x))/( (√(tan x)) +1)) dx  adding together of φ(x) yields  2φ =∫_0 ^(π/2) (1/(1+(√(tan x)))) dx + ∫_0 ^(π/2) ((√(tan x))/(1+(√(tan x)))) dx  2φ = ∫_0 ^(π/2)  dx = x ] _0^(π/2)   φ = (π/4).

$$\phi\:=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}}\:{dx}\: \\ $$$${using}\:{the}\:{interval}\:{inversion}\:{substitution} \\ $$$${that}\:{replaces}\:{x}\:{with}\:\frac{\pi}{\mathrm{2}}−{x}\:,\:{we}\:{get}\: \\ $$$$\phi\:=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{cot}\:{x}}}\:{dx}\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\sqrt{\mathrm{tan}\:{x}}}{\:\sqrt{\mathrm{tan}\:{x}}\:+\mathrm{1}}\:{dx} \\ $$$${adding}\:{together}\:{of}\:\phi\left({x}\right)\:{yields} \\ $$$$\mathrm{2}\phi\:=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\mathrm{1}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}}\:{dx}\:+\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\frac{\sqrt{\mathrm{tan}\:{x}}}{\mathrm{1}+\sqrt{\mathrm{tan}\:{x}}}\:{dx} \\ $$$$\left.\mathrm{2}\phi\:=\:\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:{dx}\:=\:{x}\:\right]\:_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\phi\:=\:\frac{\pi}{\mathrm{4}}.\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com