All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122882 by mnjuly1970 last updated on 20/Nov/20
...nicecalculus...provethat:::Ω=∫01(xφ−1ln(x))2dx=5ln(φ).m.n.
Answered by TANMAY PANACEA last updated on 20/Nov/20
f(φ)=∫01xφ−1lnxdxdfdφ=∫01xφlnxlnxdx=∣xφ+1φ+1∣01=1φ+1df=dφφ+1f=ln(φ+1)+Cwhenφ=0f(φ)=0C=0f(φ)=ln(φ+1)wait...
Commented by mnjuly1970 last updated on 21/Nov/20
thankyoumrtanmayforyoureffortwithyourpermissionipresentthesolution.note:ln(N)=∫01xN−1−1ln(x)dxf(a)=∫01(xa−1)2ln2(x)dxf′(a)=∫01∂∂a[(xa−1)2ln2(x)]=∫012(xa−1)xaln(x)ln2(x)dx=2∫01x2a−xaln(x)dx=2∫01x2a−1ln(x)+2∫011−xaln(x)dx=2ln(2a+1)−2ln(a+1)f(a)=2∫ln(2a+1)da−2∫ln(a+1)da+C=(2a+1)ln(2a+1)−(2a+1)−2(a+1)ln(a+1)+2(a+1)+Cf(0)=1+C⇒C=−1f(a)=(2a+1)ln(2a+1)−2(a+1)ln(a+1)+1−1Ω=f(φ)=(2φ+1)ln(2φ+1)−2(φ+1)ln(φ+1)φ:isgoldenratioandweknow:φ2=φ+1=(φ2+φ)ln(φ2+φ)−2φ2ln(φ2)=φ3ln(φ3)−4φ2ln(φ)=(3φ3−4φ2)ln(φ)=(3φ2+3φ−4φ2)ln(φ)=(−φ2+3φ)ln(φ)=(−φ−1+3φ)ln(φ)=(2φ−1)ln(φ)=(2(1+52)−1)ln(φ)=5ln(φ)✓✓✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com