Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122882 by mnjuly1970 last updated on 20/Nov/20

         ...  nice  calculus...      prove that :::         Ω=∫_0 ^( 1) (((x^ϕ −1)/(ln(x))))^2 dx=(√5) ln(ϕ)                     .m.n.

...nicecalculus...provethat:::Ω=01(xφ1ln(x))2dx=5ln(φ).m.n.

Answered by TANMAY PANACEA last updated on 20/Nov/20

f(ϕ)=∫_0 ^1 ((x^ϕ −1)/(lnx))dx  (df/dϕ)=∫_0 ^1 ((x^ϕ lnx)/(lnx))dx=∣(x^(ϕ+1) /(ϕ+1))∣_0 ^1 =(1/(ϕ+1))  df=(dϕ/(ϕ+1))  f=ln(ϕ+1)+C  when ϕ=0  f(ϕ)=0  C=0  f(ϕ)=ln(ϕ+1)  wait...

f(φ)=01xφ1lnxdxdfdφ=01xφlnxlnxdx=∣xφ+1φ+101=1φ+1df=dφφ+1f=ln(φ+1)+Cwhenφ=0f(φ)=0C=0f(φ)=ln(φ+1)wait...

Commented by mnjuly1970 last updated on 21/Nov/20

thank you mr tanmay for your  effort   with your permission   i present the solution.  note :ln(N)=∫_0 ^( 1) ((x^(N−1) −1)/(ln(x)))dx   f(a)=∫_0 ^( 1) (((x^a −1)^2 )/(ln^2 (x)))dx   f ′(a)=∫_0 ^( 1) (∂/∂a)[(((x^a −1)^2 )/(ln^2 (x)))]  =∫_0 ^( 1) ((2(x^a −1)x^a ln(x))/(ln^2 (x)))dx=2∫_0 ^( 1) ((x^(2a) −x^a )/(ln(x)))dx  =2∫_0 ^( 1) ((x^(2a) −1)/(ln(x))) +2∫_0 ^( 1) ((1−x^a )/(ln(x)))dx  =2ln(2a+1)−2ln(a+1)  f(a)=2∫^  ln(2a+1)da−2∫ln(a+1)da+C  =(2a+1)ln(2a+1)−(2a+1)     −2(a+1)ln(a+1)+2(a+1)+C  f(0)=1+C⇒C=−1  f(a)=(2a+1)ln(2a+1)−2(a+1)ln(a+1)+1−1      Ω=f(ϕ)=(2ϕ+1)ln(2ϕ+1)−2(ϕ+1)ln(ϕ+1)    ϕ: is golden ratio     and  we know: ϕ^2 =ϕ+1  =(ϕ^2 +ϕ)ln(ϕ^2 +ϕ)−2ϕ^2 ln(ϕ^2 )  =ϕ^3 ln(ϕ^3 )−4ϕ^2 ln(ϕ)  =(3ϕ^3 −4ϕ^2 )ln(ϕ)=(3ϕ^2 +3ϕ−4ϕ^2 )ln(ϕ)  =(−ϕ^2 +3ϕ)ln(ϕ)=(−ϕ−1+3ϕ)ln(ϕ)   =(2ϕ−1)ln(ϕ)=(2(((1+(√5))/2))−1)ln(ϕ)  =(√5) ln(ϕ)  ✓ ✓✓

thankyoumrtanmayforyoureffortwithyourpermissionipresentthesolution.note:ln(N)=01xN11ln(x)dxf(a)=01(xa1)2ln2(x)dxf(a)=01a[(xa1)2ln2(x)]=012(xa1)xaln(x)ln2(x)dx=201x2axaln(x)dx=201x2a1ln(x)+2011xaln(x)dx=2ln(2a+1)2ln(a+1)f(a)=2ln(2a+1)da2ln(a+1)da+C=(2a+1)ln(2a+1)(2a+1)2(a+1)ln(a+1)+2(a+1)+Cf(0)=1+CC=1f(a)=(2a+1)ln(2a+1)2(a+1)ln(a+1)+11Ω=f(φ)=(2φ+1)ln(2φ+1)2(φ+1)ln(φ+1)φ:isgoldenratioandweknow:φ2=φ+1=(φ2+φ)ln(φ2+φ)2φ2ln(φ2)=φ3ln(φ3)4φ2ln(φ)=(3φ34φ2)ln(φ)=(3φ2+3φ4φ2)ln(φ)=(φ2+3φ)ln(φ)=(φ1+3φ)ln(φ)=(2φ1)ln(φ)=(2(1+52)1)ln(φ)=5ln(φ)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com