Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 122883 by kolos last updated on 20/Nov/20

Σ_1 ^∞ (((sin (x))/x))=?

1(sin(x)x)=?

Commented by Dwaipayan Shikari last updated on 20/Nov/20

Σ_(n=1) ^∞ ((sinx)/x)=(1/(2i))Σ_(n=1) ^∞ (e^(ix) /x)−(1/(2i))Σ^∞ (e^(−ix) /x)                  =(1/(2i))(−log(1−e^i )+log(1−e^(−i) ))=(1/(2i))log(((1−e^(−i) )/(1−e^i )))  =(1/(2i))log(−e^(−i) )=(1/(2i))log(e^(iπ) )+(1/(2i))(loge^(−i) )=(π/2)−(1/2)

n=1sinxx=12in=1eixx12ieixx=12i(log(1ei)+log(1ei))=12ilog(1ei1ei)=12ilog(ei)=12ilog(eiπ)+12i(logei)=π212

Commented by kolos last updated on 21/Nov/20

  thank so much , every single one

thanksomuch,everysingleone

Answered by TANMAY PANACEA last updated on 20/Nov/20

i think  q=Σ_(x=1) ^∞ ((sinx)/x)  p=Σ_(x=1) ^∞ ((cosx)/x)  p+iq=Σ_(x=1) ^∞ (e^(ix) /x)=(e^i /1)+(e^(2i) /2)+(e^(3i) /3)+...∞  p+iq=−ln(1−e^i )=−ln(1−cos1−isin1)  p+iq=−ln(2sin^2 (1/2)−i×2sin(1/2)xcos(1/2))  p+iq=−ln{−2sin(1/2)(sin(1/2)+icos(1/2))}  p+iq=−ln{2sin(π+(1/2))(cos((π/2)−(1/2))+isin((π/2)−(1/2))}  p+iaq=−ln(2sin(π+(1/2)))−ln(e^(i((π/2)−(1/2)))   p+iq=−ln(2sin(π+(1/2))−i((π/2)−(1/2))  q=−(((π−1)/2))  ln(1−t)=−t−(t^2 /2)−(t^3 /3)−(t^4 /4)...∞  −ln(1−t)=t+(t^2 /2)+(t^3 /3)+..∞

ithinkq=x=1sinxxp=x=1cosxxp+iq=x=1eixx=ei1+e2i2+e3i3+...p+iq=ln(1ei)=ln(1cos1isin1)p+iq=ln(2sin212i×2sin12xcos12)p+iq=ln{2sin12(sin12+icos12)}p+iq=ln{2sin(π+12)(cos(π212)+isin(π212)}p+iaq=ln(2sin(π+12))ln(ei(π212)p+iq=ln(2sin(π+12)i(π212)q=(π12)ln(1t)=tt22t33t44...ln(1t)=t+t22+t33+..

Answered by Dwaipayan Shikari last updated on 20/Nov/20

In the same way  Σ_(n=1) ^∞ ((cosx)/x)=(1/2)Σ_(n=1) ^∞ (e^(ix) /x)+(e^(−ix) /x)=(1/2)(log((1/((1−e^i )(1−e^(−i) ))))  =(1/2)log((1/(1−(e^i +e^(−i) )+1)))=(1/2)log((1/(2−2cos(1))))

Inthesamewayn=1cosxx=12n=1eixx+eixx=12(log(1(1ei)(1ei))=12log(11(ei+ei)+1)=12log(122cos(1))

Answered by mathmax by abdo last updated on 21/Nov/20

i think the Q is Σ_(n=1) ^∞  ((sin(n))/n)  let S(x)=Σ_(n=1) ^∞  ((sin(nx))/n) ⇒S(x) =Im(Σ_(n=1) ^∞  (e^(inx) /n))  w(x)=Σ_(n=1) ^∞  (e^(inx) /n) ⇒w^′ (x)=Σ_(n=1) ^∞ ((in e^(inx) )/n) =iΣ_(n=1) ^∞  (e^(ix) )^n   =i×(1/(1−e^(ix) )) ⇒w(x)=−ln(1−e^(ix) )+c    with w)0)=0=c ⇒  w(x)=−ln(1−e^(ix) ) ⇒S(x)=Im(−ln(1−e^(ix) )) we have  ln(1−e^(ix) )=ln(1−cosx−isinx) =ln(2sin^2 ((x/2))−2isin((x/2))cos((x/2)))  =ln(2)+ln(−isin((x/2))(cos((x/2))+isin((x/2)))=ln(2)+ln(−i)+ln(sin((x/2)))+ln(e^((ix)/2) )  =ln(2)−((iπ)/2)+ln(sin((x/2)))+((ix)/2) =ln(2sin((x/2)))+((x−π)/2)i ⇒  S(x)=((π−x)/2) ⇒Σ_(n=1) ^∞  ((sin(n))/n) =S(1) =((π−1)/2)

ithinktheQisn=1sin(n)nletS(x)=n=1sin(nx)nS(x)=Im(n=1einxn)w(x)=n=1einxnw(x)=n=1ineinxn=in=1(eix)n=i×11eixw(x)=ln(1eix)+cwithw)0)=0=cw(x)=ln(1eix)S(x)=Im(ln(1eix))wehaveln(1eix)=ln(1cosxisinx)=ln(2sin2(x2)2isin(x2)cos(x2))=ln(2)+ln(isin(x2)(cos(x2)+isin(x2))=ln(2)+ln(i)+ln(sin(x2))+ln(eix2)=ln(2)iπ2+ln(sin(x2))+ix2=ln(2sin(x2))+xπ2iS(x)=πx2n=1sin(n)n=S(1)=π12

Answered by mnjuly1970 last updated on 21/Nov/20

 Φ=Σ_(n=1) ^∞ (((sin(n))/n))=(1/(2i))Σ_(n=1) ^∞ (((e^(in) −e^(−in) )/n))  =(1/(2i))[−ln(1−e^i )+ln(1−e^(−i) )]  =(1/(2i))ln(((1−e^(−i) )/(1−e^i )))=(1/(2i))ln(−e^(−i) )  =(1/(2i))[iπ−i]=((π−1)/2)

Φ=n=1(sin(n)n)=12in=1(eineinn)=12i[ln(1ei)+ln(1ei)]=12iln(1ei1ei)=12iln(ei)=12i[iπi]=π12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com