All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122919 by bemath last updated on 20/Nov/20
Answered by Dwaipayan Shikari last updated on 20/Nov/20
∫012xe2x(1+2x)2dx=14∫01ueu(1+u)2du=14∫01eu(u+1)−eu(u+1)2=14[euu+1]01=14(e2−1)=18(e−2)
Answered by liberty last updated on 20/Nov/20
let1+2x=u⇒x=u−12∧dx=12duϕ=∫(u−12)eu−1u212du=14∫(u−1)eu−1u2duϕ=14e∫(u−1)euu2du=14e[∫u.eu−euu2du]ϕ=14e∫d(euu)=14e(euu)=eu−14uputborder{u=2u=1giveϕ=14[eu−1u]12=14(e2−1).
Terms of Service
Privacy Policy
Contact: info@tinkutara.com