All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122922 by bemath last updated on 21/Nov/20
∫π/40cosx+sinx16sin2x+9dx
Answered by liberty last updated on 21/Nov/20
ς=∫π/40cosx+sinx16sin2x+9dx[let16sin2x+9=t⇒dt=32cos2xdx]⇒dt=32(cosx+sinx)(cosx−sinx)dx⇒dt=32(cosx+sinx)1−sin2xdx⇒dt=32(cosx+sinx)1−(t−916)dx⇒(cosx+sinx)dx=dt3225−t16=dt825−tς=∫925dt8t25−t=18∫925dtt25−t[let25−t=s⇒t=25−s2]ς=18∫40−2sdss(25−s2)=14∫04ds25−s2[−1(s+5)(s−5)=As+5+Bs−5][A=−1s−5∣s=−5=110∧B=−1s+5∣s=5=−110]ς=140(∫04dss+5−∫04dss−5)ς=140(ln∣s+5s−5∣)04=ln(9)40.▴
Terms of Service
Privacy Policy
Contact: info@tinkutara.com