Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122927 by bemath last updated on 21/Nov/20

Commented by liberty last updated on 21/Nov/20

μ(x)=∫ (√((1−(√x))/(1+(√x)))) dx    [ let (√x) = sin z ⇒ dx = sin 2z dz ]  μ(x)=∫ (√((1−sin z)/(1+sin z))) (sin 2z dz )   μ(x)=∫ ((√((1−sin z)^2 ))/(cos z)) (2sin z cos z ) dz  μ(x)= ∫ 2sin z(1−sin z) dz   μ(x)=∫(2sin z−2((1/2)−cos 2z))dz  μ(x)=−2cos z−z+sin 2z + c  μ(x)=2cos z(sin z−1)−z + c  μ(x)=2(√(1−x)) ((√x) −1)−sin^(−1) (√x) + c

$$\mu\left({x}\right)=\int\:\sqrt{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}+\sqrt{{x}}}}\:{dx}\: \\ $$$$\:\left[\:{let}\:\sqrt{{x}}\:=\:\mathrm{sin}\:{z}\:\Rightarrow\:{dx}\:=\:\mathrm{sin}\:\mathrm{2}{z}\:{dz}\:\right] \\ $$$$\mu\left({x}\right)=\int\:\sqrt{\frac{\mathrm{1}−\mathrm{sin}\:{z}}{\mathrm{1}+\mathrm{sin}\:{z}}}\:\left(\mathrm{sin}\:\mathrm{2}{z}\:{dz}\:\right)\: \\ $$$$\mu\left({x}\right)=\int\:\frac{\sqrt{\left(\mathrm{1}−\mathrm{sin}\:{z}\right)^{\mathrm{2}} }}{\mathrm{cos}\:{z}}\:\left(\mathrm{2sin}\:{z}\:\mathrm{cos}\:{z}\:\right)\:{dz} \\ $$$$\mu\left({x}\right)=\:\int\:\mathrm{2sin}\:{z}\left(\mathrm{1}−\mathrm{sin}\:{z}\right)\:{dz}\: \\ $$$$\mu\left({x}\right)=\int\left(\mathrm{2sin}\:{z}−\mathrm{2}\left(\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{cos}\:\mathrm{2}{z}\right)\right){dz} \\ $$$$\mu\left({x}\right)=−\mathrm{2cos}\:{z}−{z}+\mathrm{sin}\:\mathrm{2}{z}\:+\:{c} \\ $$$$\mu\left({x}\right)=\mathrm{2cos}\:{z}\left(\mathrm{sin}\:{z}−\mathrm{1}\right)−{z}\:+\:{c} \\ $$$$\mu\left({x}\right)=\mathrm{2}\sqrt{\mathrm{1}−{x}}\:\left(\sqrt{{x}}\:−\mathrm{1}\right)−\mathrm{sin}^{−\mathrm{1}} \sqrt{{x}}\:+\:{c} \\ $$

Answered by MJS_new last updated on 21/Nov/20

we had this a few days ago but I can′t find  the old post  simply let t=(√((1−(√x))/(1+(√x)))) ⇔ x=(((t^2 −1)^2 )/((t^2 +1)^2 ))∧t^2 −1≤0  → dx=−2(√x)(√(1−(√x)))(1+(√x))^(3/2) dt  the integral now becomes  8∫((t^2 (t^2 −1))/((t^2 +1)^3 ))dt  and this is “easy” to solve. I get  2arctan t −((2t(3t^2 +1))/((t^2 +1)^2 ))=  =((√x)−2)(√(1−x))+2arctan (√((1−(√x))/(1+(√x)))) +C=  =((√x)−2)(√(1−x))+arccos (√x) +C

$$\mathrm{we}\:\mathrm{had}\:\mathrm{this}\:\mathrm{a}\:\mathrm{few}\:\mathrm{days}\:\mathrm{ago}\:\mathrm{but}\:\mathrm{I}\:\mathrm{can}'\mathrm{t}\:\mathrm{find} \\ $$$$\mathrm{the}\:\mathrm{old}\:\mathrm{post} \\ $$$$\mathrm{simply}\:\mathrm{let}\:{t}=\sqrt{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}+\sqrt{{x}}}}\:\Leftrightarrow\:{x}=\frac{\left({t}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} }{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }\wedge{t}^{\mathrm{2}} −\mathrm{1}\leqslant\mathrm{0} \\ $$$$\rightarrow\:{dx}=−\mathrm{2}\sqrt{{x}}\sqrt{\mathrm{1}−\sqrt{{x}}}\left(\mathrm{1}+\sqrt{{x}}\right)^{\mathrm{3}/\mathrm{2}} {dt} \\ $$$$\mathrm{the}\:\mathrm{integral}\:\mathrm{now}\:\mathrm{becomes} \\ $$$$\mathrm{8}\int\frac{{t}^{\mathrm{2}} \left({t}^{\mathrm{2}} −\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{3}} }{dt} \\ $$$$\mathrm{and}\:\mathrm{this}\:\mathrm{is}\:``\mathrm{easy}''\:\mathrm{to}\:\mathrm{solve}.\:\mathrm{I}\:\mathrm{get} \\ $$$$\mathrm{2arctan}\:{t}\:−\frac{\mathrm{2}{t}\left(\mathrm{3}{t}^{\mathrm{2}} +\mathrm{1}\right)}{\left({t}^{\mathrm{2}} +\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$=\left(\sqrt{{x}}−\mathrm{2}\right)\sqrt{\mathrm{1}−{x}}+\mathrm{2arctan}\:\sqrt{\frac{\mathrm{1}−\sqrt{{x}}}{\mathrm{1}+\sqrt{{x}}}}\:+{C}= \\ $$$$=\left(\sqrt{{x}}−\mathrm{2}\right)\sqrt{\mathrm{1}−{x}}+\mathrm{arccos}\:\sqrt{{x}}\:+{C} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com