All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122927 by bemath last updated on 21/Nov/20
Commented by liberty last updated on 21/Nov/20
μ(x)=∫1−x1+xdx[letx=sinz⇒dx=sin2zdz]μ(x)=∫1−sinz1+sinz(sin2zdz)μ(x)=∫(1−sinz)2cosz(2sinzcosz)dzμ(x)=∫2sinz(1−sinz)dzμ(x)=∫(2sinz−2(12−cos2z))dzμ(x)=−2cosz−z+sin2z+cμ(x)=2cosz(sinz−1)−z+cμ(x)=21−x(x−1)−sin−1x+c
Answered by MJS_new last updated on 21/Nov/20
wehadthisafewdaysagobutIcan′tfindtheoldpostsimplylett=1−x1+x⇔x=(t2−1)2(t2+1)2∧t2−1⩽0→dx=−2x1−x(1+x)3/2dttheintegralnowbecomes8∫t2(t2−1)(t2+1)3dtandthisis‘‘easy″tosolve.Iget2arctant−2t(3t2+1)(t2+1)2==(x−2)1−x+2arctan1−x1+x+C==(x−2)1−x+arccosx+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com