Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122936 by CanovasCamiseros last updated on 21/Nov/20

Commented by Dwaipayan Shikari last updated on 21/Nov/20

∫_0 ^(π/2) (dx/(b^2 tan^2 x+1))            btanx=t  ⇒bsec^2 x=(dt/dx)  b∫_0 ^∞ (dt/((t^2 +b^2 )(t^2 +1)))  =(b/(b^2 −1))∫_0 ^∞ (1/(t^2 +1))−(1/(t^2 +b^2 ))  =((πb)/(2(b^2 −1)))−(π/(2(b^2 −1)))  =(π/(2(b+1)))

0π2dxb2tan2x+1btanx=tbsec2x=dtdxb0dt(t2+b2)(t2+1)=bb2101t2+11t2+b2=πb2(b21)π2(b21)=π2(b+1)

Commented by CanovasCamiseros last updated on 21/Nov/20

please help

pleasehelp

Answered by mathmax by abdo last updated on 21/Nov/20

A =∫_0 ^(π/2)  (dx/(b^2 tan^2 x +1)) ⇒ A =_(tanx=t)   ∫_0 ^∞    (dt/((1+t^2 )(b^2 t^2  +1)))  =_(bt=u)   ∫_0 ^∞       (du/(b(1+(u^2 /b^2 ))(u^2  +1))) =∫_0 ^∞    ((bdu)/((u^2  +b^2 )(u^2  +1)))  =(b/2) ∫_(−∞) ^(+∞)  (du/((u^2  +b^2 )(u^2  +1)))  (we rake b>0) let  ϕ(z)=(1/((z^2  +b^2 )(z^2  +1))) ⇒ϕ(z)=(1/((z−ib)(z+ib)(z−i)(z+i)))  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{ Res(ϕ,i) +Res(ϕ,ib)}  Res(ϕ,i)=(1/(2i(b^2 −1)))  Res(ϕ,ib) =(1/(2ib(1−b^2 ))) ⇒  ∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ{(1/(2i(b^2 −1)))+(1/(2ib(1−b^2 )))}  =(π/(b^2 −1)) −(π/(b(b^2 −1))) =(π/(b^2 −1))(1−(1/b)) =((π(b−1))/(b(b−1)(b+1))) =(π/(b(b+1))) ⇒  A =(b/2).(π/(b(b+1))) =(π/(2(b+1)))

A=0π2dxb2tan2x+1A=tanx=t0dt(1+t2)(b2t2+1)=bt=u0dub(1+u2b2)(u2+1)=0bdu(u2+b2)(u2+1)=b2+du(u2+b2)(u2+1)(werakeb>0)letφ(z)=1(z2+b2)(z2+1)φ(z)=1(zib)(z+ib)(zi)(z+i)+φ(z)dz=2iπ{Res(φ,i)+Res(φ,ib)}Res(φ,i)=12i(b21)Res(φ,ib)=12ib(1b2)+φ(z)dz=2iπ{12i(b21)+12ib(1b2)}=πb21πb(b21)=πb21(11b)=π(b1)b(b1)(b+1)=πb(b+1)A=b2.πb(b+1)=π2(b+1)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com