Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 122963 by Lordose last updated on 21/Nov/20

∫_( 0) ^( 1) ((ln(1+x))/(1+x^2 ))dx

01ln(1+x)1+x2dx

Answered by Dwaipayan Shikari last updated on 21/Nov/20

∫_0 ^(π/4) ((log(1+tanθ))/(1+tan^2 θ)).sec^2 θdθ  =∫_0 ^(π/4) log((√2)(cos((π/4)−x))−log(cosx)dx  =∫_0 ^(π/4) (1/2)log(2)+∫_0 ^(π/4) log(cos((π/4)−x))−log(cosx)  =(π/8)log(2)+I  I=∫_0 ^(π/4) log(cos((π/4)−x))−log(cosx)=∫_0 ^(π/4) log(cosx)−log(cos((π/4)−x))  I=0  So answer is   ⇒(π/8)log(2)

0π4log(1+tanθ)1+tan2θ.sec2θdθ=0π4log(2(cos(π4x))log(cosx)dx=0π412log(2)+0π4log(cos(π4x))log(cosx)=π8log(2)+II=0π4log(cos(π4x))log(cosx)=0π4log(cosx)log(cos(π4x))I=0Soanswerisπ8log(2)

Answered by mnjuly1970 last updated on 21/Nov/20

  solution:    x=tan(y)⇒ dx= (1+tan^2 (y))dy  I =∫_0 ^( 1) ((ln(1+x))/(1+x^2 ))dx=∫_0 ^( (π/4)) ln(1+tan(y))dy  =∫_0 ^( (π/4)) ln[1+tan((π/4)−y)]dy  =∫_0 ^( (π/4)) ln(1+((1−tan(y))/(1+tan(y))))dy  =∫_0 ^( (π/4)) {ln(2)−ln(1+tan(y))}dy  =(π/4)ln(2)−I  2I=(π/4)ln(2) ⇒I=(π/8)ln(2)  ✓

solution:x=tan(y)dx=(1+tan2(y))dyI=01ln(1+x)1+x2dx=0π4ln(1+tan(y))dy=0π4ln[1+tan(π4y)]dy=0π4ln(1+1tan(y)1+tan(y))dy=0π4{ln(2)ln(1+tan(y))}dy=π4ln(2)I2I=π4ln(2)I=π8ln(2)

Terms of Service

Privacy Policy

Contact: info@tinkutara.com