All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 122963 by Lordose last updated on 21/Nov/20
∫01ln(1+x)1+x2dx
Answered by Dwaipayan Shikari last updated on 21/Nov/20
∫0π4log(1+tanθ)1+tan2θ.sec2θdθ=∫0π4log(2(cos(π4−x))−log(cosx)dx=∫0π412log(2)+∫0π4log(cos(π4−x))−log(cosx)=π8log(2)+II=∫0π4log(cos(π4−x))−log(cosx)=∫0π4log(cosx)−log(cos(π4−x))I=0Soansweris⇒π8log(2)
Answered by mnjuly1970 last updated on 21/Nov/20
solution:x=tan(y)⇒dx=(1+tan2(y))dyI=∫01ln(1+x)1+x2dx=∫0π4ln(1+tan(y))dy=∫0π4ln[1+tan(π4−y)]dy=∫0π4ln(1+1−tan(y)1+tan(y))dy=∫0π4{ln(2)−ln(1+tan(y))}dy=π4ln(2)−I2I=π4ln(2)⇒I=π8ln(2)✓
Terms of Service
Privacy Policy
Contact: info@tinkutara.com