Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 123025 by ajfour last updated on 21/Nov/20

Commented by ajfour last updated on 22/Nov/20

If α, β, γ are roots of cubic eq.  x^3 −x−c =0   (0<c<(2/(3(√3)))) ; wirh the  help of suitable p , find α.

$${If}\:\alpha,\:\beta,\:\gamma\:{are}\:{roots}\:{of}\:{cubic}\:{eq}. \\ $$$${x}^{\mathrm{3}} −{x}−{c}\:=\mathrm{0}\:\:\:\left(\mathrm{0}<{c}<\frac{\mathrm{2}}{\mathrm{3}\sqrt{\mathrm{3}}}\right)\:;\:{wirh}\:{the} \\ $$$${help}\:{of}\:{suitable}\:{p}\:,\:{find}\:\alpha. \\ $$

Commented by ajfour last updated on 22/Nov/20

value of p is to be chosen, so  that the degree four can be solved  if not the degree three.

$${value}\:{of}\:{p}\:{is}\:{to}\:{be}\:{chosen},\:{so} \\ $$$${that}\:{the}\:{degree}\:{four}\:{can}\:{be}\:{solved} \\ $$$${if}\:{not}\:{the}\:{degree}\:{three}. \\ $$

Commented by mr W last updated on 22/Nov/20

what should be p?

$${what}\:{should}\:{be}\:{p}? \\ $$

Commented by MJS_new last updated on 22/Nov/20

just a few thoughts...  if α>0∧β<0∧γ<0∧β≠γ ⇒ α=−(β+γ)  x^3 +px+q=0 with p=−1 ⇒ β=−(γ/2)±((√(4−3γ^2 ))/2)  ⇒ c=γ(γ^2 −1)  introducing p we get  (x−p)(x−γ)(x−(γ/2)−((√(4−3γ^2 ))/2))(−(γ/2)+((√(4−3γ^2 ))/2))=0  and it would be nice if p=−γ  so we have to solve c=γ(γ^2 −1) for γ but this  is exactly the same problem as before:  γ^3 −γ−c=0  I don′t think we can find any fitting p without  solving this 3^(rd)  degree polynome...

$$\mathrm{just}\:\mathrm{a}\:\mathrm{few}\:\mathrm{thoughts}... \\ $$$$\mathrm{if}\:\alpha>\mathrm{0}\wedge\beta<\mathrm{0}\wedge\gamma<\mathrm{0}\wedge\beta\neq\gamma\:\Rightarrow\:\alpha=−\left(\beta+\gamma\right) \\ $$$${x}^{\mathrm{3}} +{px}+{q}=\mathrm{0}\:\mathrm{with}\:{p}=−\mathrm{1}\:\Rightarrow\:\beta=−\frac{\gamma}{\mathrm{2}}\pm\frac{\sqrt{\mathrm{4}−\mathrm{3}\gamma^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\Rightarrow\:{c}=\gamma\left(\gamma^{\mathrm{2}} −\mathrm{1}\right) \\ $$$$\mathrm{introducing}\:{p}\:\mathrm{we}\:\mathrm{get} \\ $$$$\left({x}−{p}\right)\left({x}−\gamma\right)\left({x}−\frac{\gamma}{\mathrm{2}}−\frac{\sqrt{\mathrm{4}−\mathrm{3}\gamma^{\mathrm{2}} }}{\mathrm{2}}\right)\left(−\frac{\gamma}{\mathrm{2}}+\frac{\sqrt{\mathrm{4}−\mathrm{3}\gamma^{\mathrm{2}} }}{\mathrm{2}}\right)=\mathrm{0} \\ $$$$\mathrm{and}\:\mathrm{it}\:\mathrm{would}\:\mathrm{be}\:\mathrm{nice}\:\mathrm{if}\:{p}=−\gamma \\ $$$$\mathrm{so}\:\mathrm{we}\:\mathrm{have}\:\mathrm{to}\:\mathrm{solve}\:{c}=\gamma\left(\gamma^{\mathrm{2}} −\mathrm{1}\right)\:\mathrm{for}\:\gamma\:\mathrm{but}\:\mathrm{this} \\ $$$$\mathrm{is}\:\mathrm{exactly}\:\mathrm{the}\:\mathrm{same}\:\mathrm{problem}\:\mathrm{as}\:\mathrm{before}: \\ $$$$\gamma^{\mathrm{3}} −\gamma−{c}=\mathrm{0} \\ $$$$\mathrm{I}\:\mathrm{don}'\mathrm{t}\:\mathrm{think}\:\mathrm{we}\:\mathrm{can}\:\mathrm{find}\:\mathrm{any}\:\mathrm{fitting}\:{p}\:\mathrm{without} \\ $$$$\mathrm{solving}\:\mathrm{this}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{degree}\:\mathrm{polynome}... \\ $$

Answered by ajfour last updated on 26/Nov/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com