Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 12304 by Gaurav3651 last updated on 18/Apr/17

How many geometric progressions  is/are possible contauning 27,8  and 12 as three of its/their terms?  (a)  1  (b)  2  (c)  4  (d)  infinitely many

$${How}\:{many}\:{geometric}\:{progressions} \\ $$$${is}/{are}\:{possible}\:{contauning}\:\mathrm{27},\mathrm{8} \\ $$$${and}\:\mathrm{12}\:{as}\:{three}\:{of}\:{its}/{their}\:{terms}? \\ $$$$\left({a}\right)\:\:\mathrm{1} \\ $$$$\left({b}\right)\:\:\mathrm{2} \\ $$$$\left({c}\right)\:\:\mathrm{4} \\ $$$$\left({d}\right)\:\:{infinitely}\:{many} \\ $$$$ \\ $$

Answered by mrW1 last updated on 18/Apr/17

let′s assume 8, 12 and 27 are 3 terms of  a GP with the common ratio q:  8...(n−1 terms)...12....(m−1 terms)...27    ((27)/(12))=((3×3×3)/(3×2×2))=((3×3)/(2×2))=q^m         (i)  ((12)/8)=((2×2×3)/(2×2×2))=(3/2)=q^n              (ii)  q^(m−n) =(3/2)         (i)/(ii)  ⇒ q=((3/2))^(1/(m−n))   q^n =((3/2))^(n/(m−n)) =(3/2)         from (ii)  ⇒ (n/(m−n))=1  n=m−n  ⇒ m=2n  ⇒ q=((3/2))^(1/n)       from (ii)  i.e.  for any n≥1 we can always find  a GP  whose 1st term is 8, (1+n)−th   term is 12 and (1+3n)−th term is 27,  and their common ratio is q=((3/2))^(1/n) :  T_1 =8  ..... (n−1 terms between)  T_(1+n) =8×q^n =8×((3/2))^(n/n) =12  ..... (2n−1 terms between)  T_(1+3n) =8×q^(3n) =8×((3/2))^((3n)/n) =8×((3/2))^3 =27     since any n≥1 fulfills this, we have  infinitely many such GP.    ⇒ Answer (d) is correct.    Examples  n=1:  8,12,18,27.....    n=2:  8,8×((3/2))^(1/2) ,12,12×((3/2))^(1/2) ,18,18×((3/2))^(1/2) ,27....    n=3:  8,8×((3/2))^(1/3) ,8×((3/2))^(2/3) ,12,12×((3/2))^(1/3) ,12×((3/2))^(2/3) ,18,18×((3/2))^(1/3) ,18×((3/2))^(2/3) ,27....

$${let}'{s}\:{assume}\:\mathrm{8},\:\mathrm{12}\:{and}\:\mathrm{27}\:{are}\:\mathrm{3}\:{terms}\:{of} \\ $$$${a}\:{GP}\:{with}\:{the}\:{common}\:{ratio}\:{q}: \\ $$$$\mathrm{8}...\left({n}−\mathrm{1}\:{terms}\right)...\mathrm{12}....\left({m}−\mathrm{1}\:{terms}\right)...\mathrm{27} \\ $$$$ \\ $$$$\frac{\mathrm{27}}{\mathrm{12}}=\frac{\mathrm{3}×\mathrm{3}×\mathrm{3}}{\mathrm{3}×\mathrm{2}×\mathrm{2}}=\frac{\mathrm{3}×\mathrm{3}}{\mathrm{2}×\mathrm{2}}={q}^{{m}} \:\:\:\:\:\:\:\:\left({i}\right) \\ $$$$\frac{\mathrm{12}}{\mathrm{8}}=\frac{\mathrm{2}×\mathrm{2}×\mathrm{3}}{\mathrm{2}×\mathrm{2}×\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}={q}^{{n}} \:\:\:\:\:\:\:\:\:\:\:\:\:\left({ii}\right) \\ $$$${q}^{{m}−{n}} =\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:\left({i}\right)/\left({ii}\right) \\ $$$$\Rightarrow\:{q}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{m}−{n}}} \\ $$$${q}^{{n}} =\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{{n}}{{m}−{n}}} =\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\:\:\:\:\:\:{from}\:\left({ii}\right) \\ $$$$\Rightarrow\:\frac{{n}}{{m}−{n}}=\mathrm{1} \\ $$$${n}={m}−{n} \\ $$$$\Rightarrow\:{m}=\mathrm{2}{n} \\ $$$$\Rightarrow\:{q}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{n}}} \:\:\:\:\:\:{from}\:\left({ii}\right) \\ $$$${i}.{e}.\:\:{for}\:{any}\:{n}\geqslant\mathrm{1}\:{we}\:{can}\:{always}\:{find} \\ $$$${a}\:{GP}\:\:{whose}\:\mathrm{1}{st}\:{term}\:{is}\:\mathrm{8},\:\left(\mathrm{1}+{n}\right)−{th}\: \\ $$$${term}\:{is}\:\mathrm{12}\:{and}\:\left(\mathrm{1}+\mathrm{3}{n}\right)−{th}\:{term}\:{is}\:\mathrm{27}, \\ $$$${and}\:{their}\:{common}\:{ratio}\:{is}\:{q}=\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{{n}}} : \\ $$$${T}_{\mathrm{1}} =\mathrm{8} \\ $$$$.....\:\left({n}−\mathrm{1}\:{terms}\:{between}\right) \\ $$$${T}_{\mathrm{1}+{n}} =\mathrm{8}×{q}^{{n}} =\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{{n}}{{n}}} =\mathrm{12} \\ $$$$.....\:\left(\mathrm{2}{n}−\mathrm{1}\:{terms}\:{between}\right) \\ $$$${T}_{\mathrm{1}+\mathrm{3}{n}} =\mathrm{8}×{q}^{\mathrm{3}{n}} =\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{3}{n}}{{n}}} =\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\mathrm{3}} =\mathrm{27}\: \\ $$$$ \\ $$$${since}\:{any}\:{n}\geqslant\mathrm{1}\:{fulfills}\:{this},\:{we}\:{have} \\ $$$${infinitely}\:{many}\:{such}\:{GP}. \\ $$$$ \\ $$$$\Rightarrow\:{Answer}\:\left({d}\right)\:{is}\:{correct}. \\ $$$$ \\ $$$${Examples} \\ $$$${n}=\mathrm{1}: \\ $$$$\mathrm{8},\mathrm{12},\mathrm{18},\mathrm{27}..... \\ $$$$ \\ $$$${n}=\mathrm{2}: \\ $$$$\mathrm{8},\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,\mathrm{12},\mathrm{12}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,\mathrm{18},\mathrm{18}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{2}}} ,\mathrm{27}.... \\ $$$$ \\ $$$${n}=\mathrm{3}: \\ $$$$\mathrm{8},\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{8}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ,\mathrm{12},\mathrm{12}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{12}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ,\mathrm{18},\mathrm{18}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,\mathrm{18}×\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{\frac{\mathrm{2}}{\mathrm{3}}} ,\mathrm{27}.... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com