Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 123040 by ajfour last updated on 22/Nov/20

Commented by ajfour last updated on 22/Nov/20

Find maximum side length of  equilateral △ABC , in terms of  p, q, and r; the vertices of  which lie respectively on three  concentric circles of radii   p<q<r.  Assume vertex A is as  shown on outermost circle and on  vertical axes.

$${Find}\:{maximum}\:{side}\:{length}\:{of} \\ $$$${equilateral}\:\bigtriangleup{ABC}\:,\:{in}\:{terms}\:{of} \\ $$$${p},\:{q},\:{and}\:{r};\:{the}\:{vertices}\:{of} \\ $$$${which}\:{lie}\:{respectively}\:{on}\:{three} \\ $$$${concentric}\:{circles}\:{of}\:{radii}\: \\ $$$${p}<{q}<{r}.\:\:{Assume}\:{vertex}\:{A}\:{is}\:{as} \\ $$$${shown}\:{on}\:{outermost}\:{circle}\:{and}\:{on} \\ $$$${vertical}\:{axes}. \\ $$

Commented by mr W last updated on 22/Nov/20

we get two triangles with side length  s=(√((p^2 +q^2 +r^2 ±(√(3δ)))/2)) with  δ=(p+q+r)(−p+q+r)(p−q+r)(p+q−r)

$${we}\:{get}\:{two}\:{triangles}\:{with}\:{side}\:{length} \\ $$$${s}=\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{3}\delta}}{\mathrm{2}}}\:{with} \\ $$$$\delta=\left({p}+{q}+{r}\right)\left(−{p}+{q}+{r}\right)\left({p}−{q}+{r}\right)\left({p}+{q}−{r}\right) \\ $$

Commented by ajfour last updated on 23/Nov/20

Commented by mr W last updated on 23/Nov/20

great!

$${great}! \\ $$

Answered by mr W last updated on 22/Nov/20

Commented by ajfour last updated on 23/Nov/20

Thanks a lot sir.

$${Thanks}\:{a}\:{lot}\:{sir}. \\ $$

Commented by mr W last updated on 22/Nov/20

B(−(s/2),0)  C((s/2),0)  A(0,(((√3)s)/2))  G(h,k) say  h^2 +(k−(((√3)s)/2))^2 =p^2    ...(i)  (h+(s/2))^2 +k^2 =q^2    ...(ii)  (h−(s/2))^2 +k^2 =r^2    ...(iii)  (ii)−(iii):  ⇒2hs=q^2 −r^2   (ii)−(i):  hs+(s^2 /4)+(√3)ks−((3s^2 )/4)=q^2 −p^2   ⇒2(√3)ks=s^2 +q^2 +r^2 −2p^2   into (iii):  3(q^2 −r^2 −s^2 )^2 +(s^2 +q^2 +r^2 −2p^2 )^2 =12r^2 s^2    s^4 −(p^2 +q^2 +r^2 )s^2 +p^4 +q^4 +r^4 −p^2 q^2 −q^2 r^2 −r^2 p^2 =0  s^2 =((p^2 +q^2 +r^2 ±(√((p^2 +q^2 +r^2 )^2 −4(p^4 +q^4 +r^4 −p^2 q^2 −q^2 r^2 −r^2 p^2 ))))/2)  =((p^2 +q^2 +r^2 ±(√(6(p^2 q^2 +q^2 r^2 +r^2 p^2 )−3(p^4 +q^4 +r^4 ))))/2)  =((p^2 +q^2 +r^2 ±(√(3(p+q+r)(−p+q+r)(p−q+r)(p+q−r))))/2)  ⇒s=(√((p^2 +q^2 +r^2 ±(√(3(p+q+r)(−p+q+r)(p−q+r)(p+q−r))))/2))

$${B}\left(−\frac{{s}}{\mathrm{2}},\mathrm{0}\right) \\ $$$${C}\left(\frac{{s}}{\mathrm{2}},\mathrm{0}\right) \\ $$$${A}\left(\mathrm{0},\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\right) \\ $$$${G}\left({h},{k}\right)\:{say} \\ $$$${h}^{\mathrm{2}} +\left({k}−\frac{\sqrt{\mathrm{3}}{s}}{\mathrm{2}}\right)^{\mathrm{2}} ={p}^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\left({h}+\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} ={q}^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({h}−\frac{{s}}{\mathrm{2}}\right)^{\mathrm{2}} +{k}^{\mathrm{2}} ={r}^{\mathrm{2}} \:\:\:...\left({iii}\right) \\ $$$$\left({ii}\right)−\left({iii}\right): \\ $$$$\Rightarrow\mathrm{2}{hs}={q}^{\mathrm{2}} −{r}^{\mathrm{2}} \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$${hs}+\frac{{s}^{\mathrm{2}} }{\mathrm{4}}+\sqrt{\mathrm{3}}{ks}−\frac{\mathrm{3}{s}^{\mathrm{2}} }{\mathrm{4}}={q}^{\mathrm{2}} −{p}^{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{2}\sqrt{\mathrm{3}}{ks}={s}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} \\ $$$${into}\:\left({iii}\right): \\ $$$$\mathrm{3}\left({q}^{\mathrm{2}} −{r}^{\mathrm{2}} −{s}^{\mathrm{2}} \right)^{\mathrm{2}} +\left({s}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} −\mathrm{2}{p}^{\mathrm{2}} \right)^{\mathrm{2}} =\mathrm{12}{r}^{\mathrm{2}} {s}^{\mathrm{2}} \: \\ $$$${s}^{\mathrm{4}} −\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right){s}^{\mathrm{2}} +{p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} −{p}^{\mathrm{2}} {q}^{\mathrm{2}} −{q}^{\mathrm{2}} {r}^{\mathrm{2}} −{r}^{\mathrm{2}} {p}^{\mathrm{2}} =\mathrm{0} \\ $$$${s}^{\mathrm{2}} =\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\left({p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \right)^{\mathrm{2}} −\mathrm{4}\left({p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} −{p}^{\mathrm{2}} {q}^{\mathrm{2}} −{q}^{\mathrm{2}} {r}^{\mathrm{2}} −{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{6}\left({p}^{\mathrm{2}} {q}^{\mathrm{2}} +{q}^{\mathrm{2}} {r}^{\mathrm{2}} +{r}^{\mathrm{2}} {p}^{\mathrm{2}} \right)−\mathrm{3}\left({p}^{\mathrm{4}} +{q}^{\mathrm{4}} +{r}^{\mathrm{4}} \right)}}{\mathrm{2}} \\ $$$$=\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{3}\left({p}+{q}+{r}\right)\left(−{p}+{q}+{r}\right)\left({p}−{q}+{r}\right)\left({p}+{q}−{r}\right)}}{\mathrm{2}} \\ $$$$\Rightarrow{s}=\sqrt{\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} +{r}^{\mathrm{2}} \pm\sqrt{\mathrm{3}\left({p}+{q}+{r}\right)\left(−{p}+{q}+{r}\right)\left({p}−{q}+{r}\right)\left({p}+{q}−{r}\right)}}{\mathrm{2}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com