Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 123080 by ajfour last updated on 22/Nov/20

Commented by ajfour last updated on 22/Nov/20

Find radii  r and R.

$${Find}\:{radii}\:\:{r}\:{and}\:{R}. \\ $$

Commented by MJS_new last updated on 24/Nov/20

we can select two points P= ((p),(p^2 ) ) for the  circle touching the x−axis and Q= ((q),(q^2 ) ) for  the circle touching the y−axis and get the  equations of the two circles with radii r_p , r_q   (in the 1^(st)  quadrant). then calculate the  distances of their centers to the origin d_p , d_q .  we get 2 equations which can be solved onlyo  approximately.  (1) r_p =r_q   (2) d_p =d_q   I get p≈.917194023 and q≈1.0856955  ⇒ r_p =r_q ≈.568931542 and d_p =d_q ≈1.52669097  ⇒ R≈2.09562251

$$\mathrm{we}\:\mathrm{can}\:\mathrm{select}\:\mathrm{two}\:\mathrm{points}\:{P}=\begin{pmatrix}{{p}}\\{{p}^{\mathrm{2}} }\end{pmatrix}\:\mathrm{for}\:\mathrm{the} \\ $$$$\mathrm{circle}\:\mathrm{touching}\:\mathrm{the}\:{x}−\mathrm{axis}\:\mathrm{and}\:{Q}=\begin{pmatrix}{{q}}\\{{q}^{\mathrm{2}} }\end{pmatrix}\:\mathrm{for} \\ $$$$\mathrm{the}\:\mathrm{circle}\:\mathrm{touching}\:\mathrm{the}\:{y}−\mathrm{axis}\:\mathrm{and}\:\mathrm{get}\:\mathrm{the} \\ $$$$\mathrm{equations}\:\mathrm{of}\:\mathrm{the}\:\mathrm{two}\:\mathrm{circles}\:\mathrm{with}\:\mathrm{radii}\:{r}_{{p}} ,\:{r}_{{q}} \\ $$$$\left(\mathrm{in}\:\mathrm{the}\:\mathrm{1}^{\mathrm{st}} \:\mathrm{quadrant}\right).\:\mathrm{then}\:\mathrm{calculate}\:\mathrm{the} \\ $$$$\mathrm{distances}\:\mathrm{of}\:\mathrm{their}\:\mathrm{centers}\:\mathrm{to}\:\mathrm{the}\:\mathrm{origin}\:{d}_{{p}} ,\:{d}_{{q}} . \\ $$$$\mathrm{we}\:\mathrm{get}\:\mathrm{2}\:\mathrm{equations}\:\mathrm{which}\:\mathrm{can}\:\mathrm{be}\:\mathrm{solved}\:\mathrm{onlyo} \\ $$$$\mathrm{approximately}. \\ $$$$\left(\mathrm{1}\right)\:{r}_{{p}} ={r}_{{q}} \\ $$$$\left(\mathrm{2}\right)\:{d}_{{p}} ={d}_{{q}} \\ $$$$\mathrm{I}\:\mathrm{get}\:{p}\approx.\mathrm{917194023}\:\mathrm{and}\:{q}\approx\mathrm{1}.\mathrm{0856955} \\ $$$$\Rightarrow\:{r}_{{p}} ={r}_{{q}} \approx.\mathrm{568931542}\:\mathrm{and}\:{d}_{{p}} ={d}_{{q}} \approx\mathrm{1}.\mathrm{52669097} \\ $$$$\Rightarrow\:{R}\approx\mathrm{2}.\mathrm{09562251} \\ $$

Commented by mr W last updated on 24/Nov/20

answer is correct!

$${answer}\:{is}\:{correct}! \\ $$

Answered by mr W last updated on 24/Nov/20

P(p,p^2 )  A((√((R−r)^2 −r^2 )),r)  ((p^2 −r)/(p−(√(R(R−2r)))))=−(1/(2p))  ⇒2p^3 −(2r−1)p−(√(R(R−2r)))=0   ...(i)  (p−(√(R(R−2r))))^2 +(p^2 −r)^2 =r^2   ⇒p^4 −(2r−1)p^2 −2(√(R(R−2r)))p+R(R−2r)=0   ..(ii)  (i)×p−(ii)×2:  (2r−1)p^2 +3(√(R(R−2r)))p−2R(R−2r)=0  ⇒p=(((√(R(R−2r)))((√(16r+1))−3))/(2(2r−1)))  put it into (i):  R^2 −2rR−2((√(16r+1))−1)(((2r−1)/( (√(16r+1))−3)))^3 =0  ⇒R=r+(√(r^2 +2((√(16r+1))−1)(((2r−1)/( (√(16r+1))−3)))^3 ))     ...(I)    Q(q,q^2 )  B(r,(√(R(R−2r))))  ((q^2 −(√(R(R−2r))))/(q−r))=−(1/(2q))  2q^3 −[2(√(R(R−2r)))−1]q−r=0   ...(iii)    (q^2 −(√(R(R−2r))))^2 +(q−r)^2 =r^2   q^4 −[2(√(R(R−2r)))−1]q^2 −2rq+R(R−2r)=0   ...(iv)  (iii)×p−(iv)×2:  [2(√(R(R−2r)))−1]q^2 +3rq−2R(R−2r)=0  ⇒q=(((√(9r^2 +8R(R−2r)[2(√(R(R−2r)))−1]))−3r)/(2[2(√(R(R−2r)))−1]))  put it into (iii):  ⇒[(((√(9r^2 +8R(R−2r)[2(√(R(R−2r)))−1]))−3r)/(2(√(R(R−2r)))−1))]^3 −       2(√(9r^2 +8R(R−2r)[2(√(R(R−2r)))−1]))+2r=0   ...(II)    put (I) into (II) we get an equation  for r which gives r≈0.5689. put this  into (I) we get R≈2.0955.

$${P}\left({p},{p}^{\mathrm{2}} \right) \\ $$$${A}\left(\sqrt{\left({R}−{r}\right)^{\mathrm{2}} −{r}^{\mathrm{2}} },{r}\right) \\ $$$$\frac{{p}^{\mathrm{2}} −{r}}{{p}−\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}}=−\frac{\mathrm{1}}{\mathrm{2}{p}} \\ $$$$\Rightarrow\mathrm{2}{p}^{\mathrm{3}} −\left(\mathrm{2}{r}−\mathrm{1}\right){p}−\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}=\mathrm{0}\:\:\:...\left({i}\right) \\ $$$$\left({p}−\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}\right)^{\mathrm{2}} +\left({p}^{\mathrm{2}} −{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$$\Rightarrow{p}^{\mathrm{4}} −\left(\mathrm{2}{r}−\mathrm{1}\right){p}^{\mathrm{2}} −\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}{p}+{R}\left({R}−\mathrm{2}{r}\right)=\mathrm{0}\:\:\:..\left({ii}\right) \\ $$$$\left({i}\right)×{p}−\left({ii}\right)×\mathrm{2}: \\ $$$$\left(\mathrm{2}{r}−\mathrm{1}\right){p}^{\mathrm{2}} +\mathrm{3}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}{p}−\mathrm{2}{R}\left({R}−\mathrm{2}{r}\right)=\mathrm{0} \\ $$$$\Rightarrow{p}=\frac{\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}\left(\sqrt{\mathrm{16}{r}+\mathrm{1}}−\mathrm{3}\right)}{\mathrm{2}\left(\mathrm{2}{r}−\mathrm{1}\right)} \\ $$$${put}\:{it}\:{into}\:\left({i}\right): \\ $$$${R}^{\mathrm{2}} −\mathrm{2}{rR}−\mathrm{2}\left(\sqrt{\mathrm{16}{r}+\mathrm{1}}−\mathrm{1}\right)\left(\frac{\mathrm{2}{r}−\mathrm{1}}{\:\sqrt{\mathrm{16}{r}+\mathrm{1}}−\mathrm{3}}\right)^{\mathrm{3}} =\mathrm{0} \\ $$$$\Rightarrow{R}={r}+\sqrt{{r}^{\mathrm{2}} +\mathrm{2}\left(\sqrt{\mathrm{16}{r}+\mathrm{1}}−\mathrm{1}\right)\left(\frac{\mathrm{2}{r}−\mathrm{1}}{\:\sqrt{\mathrm{16}{r}+\mathrm{1}}−\mathrm{3}}\right)^{\mathrm{3}} }\:\:\:\:\:...\left({I}\right) \\ $$$$ \\ $$$${Q}\left({q},{q}^{\mathrm{2}} \right) \\ $$$${B}\left({r},\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}\right) \\ $$$$\frac{{q}^{\mathrm{2}} −\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}}{{q}−{r}}=−\frac{\mathrm{1}}{\mathrm{2}{q}} \\ $$$$\mathrm{2}{q}^{\mathrm{3}} −\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]{q}−{r}=\mathrm{0}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$$\left({q}^{\mathrm{2}} −\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}\right)^{\mathrm{2}} +\left({q}−{r}\right)^{\mathrm{2}} ={r}^{\mathrm{2}} \\ $$$${q}^{\mathrm{4}} −\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]{q}^{\mathrm{2}} −\mathrm{2}{rq}+{R}\left({R}−\mathrm{2}{r}\right)=\mathrm{0}\:\:\:...\left({iv}\right) \\ $$$$\left({iii}\right)×{p}−\left({iv}\right)×\mathrm{2}: \\ $$$$\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]{q}^{\mathrm{2}} +\mathrm{3}{rq}−\mathrm{2}{R}\left({R}−\mathrm{2}{r}\right)=\mathrm{0} \\ $$$$\Rightarrow{q}=\frac{\sqrt{\mathrm{9}{r}^{\mathrm{2}} +\mathrm{8}{R}\left({R}−\mathrm{2}{r}\right)\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]}−\mathrm{3}{r}}{\mathrm{2}\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]} \\ $$$${put}\:{it}\:{into}\:\left({iii}\right): \\ $$$$\Rightarrow\left[\frac{\sqrt{\mathrm{9}{r}^{\mathrm{2}} +\mathrm{8}{R}\left({R}−\mathrm{2}{r}\right)\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]}−\mathrm{3}{r}}{\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}}\right]^{\mathrm{3}} − \\ $$$$\:\:\:\:\:\mathrm{2}\sqrt{\mathrm{9}{r}^{\mathrm{2}} +\mathrm{8}{R}\left({R}−\mathrm{2}{r}\right)\left[\mathrm{2}\sqrt{{R}\left({R}−\mathrm{2}{r}\right)}−\mathrm{1}\right]}+\mathrm{2}{r}=\mathrm{0}\:\:\:...\left({II}\right) \\ $$$$ \\ $$$${put}\:\left({I}\right)\:{into}\:\left({II}\right)\:{we}\:{get}\:{an}\:{equation} \\ $$$${for}\:{r}\:{which}\:{gives}\:{r}\approx\mathrm{0}.\mathrm{5689}.\:{put}\:{this} \\ $$$${into}\:\left({I}\right)\:{we}\:{get}\:{R}\approx\mathrm{2}.\mathrm{0955}. \\ $$

Commented by mr W last updated on 24/Nov/20

Commented by ajfour last updated on 25/Nov/20

Thank you MjS Sir and mrW Sir!

$${Thank}\:{you}\:{MjS}\:{Sir}\:{and}\:{mrW}\:{Sir}! \\ $$

Answered by ajfour last updated on 26/Nov/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com