Question and Answers Forum

All Questions      Topic List

Probability and Statistics Questions

Previous in All Question      Next in All Question      

Previous in Probability and Statistics      Next in Probability and Statistics      

Question Number 123100 by pticantor last updated on 23/Nov/20

let P_k =(C/(k×4^(k ) ))  1) determine C so that the family  (p_k ,k∈N^∗ ) define a measure of probability  2) we draw a number in N^∗  according to the   probability P determined the probability that the number  drawn is a multiple of 4           please i need your help

$$\boldsymbol{{let}}\:\boldsymbol{{P}}_{\boldsymbol{{k}}} =\frac{\boldsymbol{{C}}}{\boldsymbol{{k}}×\mathrm{4}^{\boldsymbol{{k}}\:} } \\ $$$$\left.\mathrm{1}\right)\:\boldsymbol{{determine}}\:\boldsymbol{{C}}\:\boldsymbol{{so}}\:\boldsymbol{{that}}\:\boldsymbol{{the}}\:\boldsymbol{{family}} \\ $$$$\left(\boldsymbol{{p}}_{\boldsymbol{{k}}} ,\boldsymbol{{k}}\in\mathbb{N}^{\ast} \right)\:\boldsymbol{{define}}\:\boldsymbol{{a}}\:\boldsymbol{{measure}}\:\boldsymbol{{of}}\:\boldsymbol{{probability}} \\ $$$$\left.\mathrm{2}\right)\:\boldsymbol{{we}}\:\boldsymbol{{draw}}\:\boldsymbol{{a}}\:\boldsymbol{{number}}\:\boldsymbol{{in}}\:\mathbb{N}^{\ast} \:\boldsymbol{{according}}\:\boldsymbol{{to}}\:\boldsymbol{{the}}\: \\ $$$$\boldsymbol{{probability}}\:\boldsymbol{{P}}\:\boldsymbol{{determined}}\:\boldsymbol{{the}}\:\boldsymbol{{probability}}\:\boldsymbol{{that}}\:\boldsymbol{{the}}\:\boldsymbol{{number}} \\ $$$$\boldsymbol{{drawn}}\:\boldsymbol{{is}}\:\boldsymbol{{a}}\:\boldsymbol{{multiple}}\:\boldsymbol{{of}}\:\mathrm{4} \\ $$$$\:\:\: \\ $$$$\:\:\:\:\boldsymbol{{please}}\:\boldsymbol{{i}}\:\boldsymbol{{need}}\:\boldsymbol{{your}}\:\boldsymbol{{help}} \\ $$

Answered by Olaf last updated on 23/Nov/20

1)  Σ_(k=1) ^∞ P_k  = 1  CΣ_(k=1) ^∞ (1/(k4^k )) = 1  (1/(1−x)) = Σ_(k=0) ^∞ x^k   −ln∣1−x∣ = Σ_(k=0) ^∞ (x^(k+1) /(k+1)) = Σ_(k=1) ^∞ (x^k /k) if ∣x∣ < 1  If x = (1/4), −ln(3/4) = Σ_(k=1) ^∞ (1/(k4^k ))  ⇒ −C.ln(3/4) = 1 ⇒ C = (1/(ln(4/3)))  2)  P_k  = (1/(k4^k ln(4/3)))  Let k = 4j, j∈N^∗     Σ_(j=1) ^∞ P_k  = (1/(ln(4/3)))Σ_(j=1) ^∞ (1/(4j4^(4j) )) = (1/(4.ln(4/3)))Σ_(j=1) ^∞ (1/(j256^j ))  Σ_(j=1) ^∞ P_k  = (1/(4.ln(4/3)))Σ_(j=1) ^∞ (1/(j256^j )) = −((ln∣1−(1/(256))∣)/(4.ln(4/3)))  Σ_(j=1) ^∞ P_k  = ((ln((256)/(255)))/(4.ln(4/3)))  (I′m not so sure of my result)

$$\left.\mathrm{1}\right) \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{P}_{{k}} \:=\:\mathrm{1} \\ $$$$\mathrm{C}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}\mathrm{4}^{{k}} }\:=\:\mathrm{1} \\ $$$$\frac{\mathrm{1}}{\mathrm{1}−{x}}\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}{x}^{{k}} \\ $$$$−\mathrm{ln}\mid\mathrm{1}−{x}\mid\:=\:\underset{{k}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{{x}^{{k}+\mathrm{1}} }{{k}+\mathrm{1}}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{x}^{{k}} }{{k}}\:\mathrm{if}\:\mid{x}\mid\:<\:\mathrm{1} \\ $$$$\mathrm{If}\:{x}\:=\:\frac{\mathrm{1}}{\mathrm{4}},\:−\mathrm{ln}\frac{\mathrm{3}}{\mathrm{4}}\:=\:\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{k}\mathrm{4}^{{k}} } \\ $$$$\Rightarrow\:−\mathrm{C}.\mathrm{ln}\frac{\mathrm{3}}{\mathrm{4}}\:=\:\mathrm{1}\:\Rightarrow\:\mathrm{C}\:=\:\frac{\mathrm{1}}{\mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$\left.\mathrm{2}\right) \\ $$$$\mathrm{P}_{{k}} \:=\:\frac{\mathrm{1}}{{k}\mathrm{4}^{{k}} \mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$\mathrm{Let}\:{k}\:=\:\mathrm{4}{j},\:{j}\in\mathbb{N}^{\ast} \\ $$$$ \\ $$$$\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{P}_{{k}} \:=\:\frac{\mathrm{1}}{\mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}}\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\mathrm{4}{j}\mathrm{4}^{\mathrm{4}{j}} }\:=\:\frac{\mathrm{1}}{\mathrm{4}.\mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}}\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{j}\mathrm{256}^{{j}} } \\ $$$$\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{P}_{{k}} \:=\:\frac{\mathrm{1}}{\mathrm{4}.\mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}}\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{j}\mathrm{256}^{{j}} }\:=\:−\frac{\mathrm{ln}\mid\mathrm{1}−\frac{\mathrm{1}}{\mathrm{256}}\mid}{\mathrm{4}.\mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$\underset{{j}=\mathrm{1}} {\overset{\infty} {\sum}}\mathrm{P}_{{k}} \:=\:\frac{\mathrm{ln}\frac{\mathrm{256}}{\mathrm{255}}}{\mathrm{4}.\mathrm{ln}\frac{\mathrm{4}}{\mathrm{3}}} \\ $$$$\left({I}'{m}\:{not}\:{so}\:{sure}\:{of}\:{my}\:{result}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com