Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 123175 by mathocean1 last updated on 23/Nov/20

Show by recurrence that  ∀ n ∈ N, Σ_(k=0 ) ^(n−1) q^k =((q^n −1)/(q−1))

$${Show}\:{by}\:{recurrence}\:{that} \\ $$$$\forall\:{n}\:\in\:\mathbb{N},\:\sum_{{k}=\mathrm{0}\:} ^{{n}−\mathrm{1}} {q}^{{k}} =\frac{{q}^{{n}} −\mathrm{1}}{{q}−\mathrm{1}}\: \\ $$

Answered by PNL last updated on 24/Nov/20

for n=1  Σ_(k=0) ^0 q^k =q^0 =((q^1 −1)/(q−1))=1 , so it′s true for n=1    for n>1, n∈N, let′s suppose this property true and  let′s prouve it for n+1    we have for n+1 :  Σ_(k=0) ^n q^k =Σ_(k=0) ^(n−1) q^k + q^n =((q^n −1)/(q−1))+ q^n =((q^n −1+q^(n+1) −q^n )/(q−1))=((q^(n+1) −1)/(q−1))   so it′s true for n+1    therefore Σ_(k=0) ^(n−1) q^k =((q^k −1)/(q−1))  for n∈N

$${for}\:{n}=\mathrm{1} \\ $$$$\underset{{k}=\mathrm{0}} {\overset{\mathrm{0}} {\sum}}{q}^{{k}} ={q}^{\mathrm{0}} =\frac{{q}^{\mathrm{1}} −\mathrm{1}}{{q}−\mathrm{1}}=\mathrm{1}\:,\:{so}\:{it}'{s}\:{true}\:{for}\:{n}=\mathrm{1} \\ $$$$ \\ $$$${for}\:{n}>\mathrm{1},\:{n}\in\mathbb{N},\:{let}'{s}\:{suppose}\:{this}\:{property}\:{true}\:{and}\:\:{let}'{s}\:{prouve}\:{it}\:{for}\:{n}+\mathrm{1} \\ $$$$ \\ $$$${we}\:{have}\:{for}\:{n}+\mathrm{1}\:: \\ $$$$\underset{{k}=\mathrm{0}} {\overset{{n}} {\sum}}{q}^{{k}} =\underset{{k}=\mathrm{0}} {\overset{{n}−\mathrm{1}} {\sum}}{q}^{{k}} +\:{q}^{{n}} =\frac{{q}^{{n}} −\mathrm{1}}{{q}−\mathrm{1}}+\:{q}^{{n}} =\frac{{q}^{{n}} −\mathrm{1}+{q}^{{n}+\mathrm{1}} −{q}^{{n}} }{{q}−\mathrm{1}}=\frac{{q}^{{n}+\mathrm{1}} −\mathrm{1}}{{q}−\mathrm{1}}\: \\ $$$${so}\:\boldsymbol{{it}}'\boldsymbol{{s}}\:\boldsymbol{{true}}\:\boldsymbol{{for}}\:\boldsymbol{{n}}+\mathrm{1} \\ $$$$ \\ $$$${therefore}\:\underset{{k}=\mathrm{0}} {\overset{\boldsymbol{{n}}−\mathrm{1}} {\sum}}\boldsymbol{{q}}^{\boldsymbol{{k}}} =\frac{\boldsymbol{{q}}^{\boldsymbol{{k}}} −\mathrm{1}}{\boldsymbol{{q}}−\mathrm{1}}\:\:\boldsymbol{{for}}\:\boldsymbol{{n}}\in\mathbb{N} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com