Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 12329 by tawa last updated on 19/Apr/17

Commented by mrW1 last updated on 19/Apr/17

if the rope is only 15m long, the  distance between the towers must  be zero!

$${if}\:{the}\:{rope}\:{is}\:{only}\:\mathrm{15}{m}\:{long},\:{the} \\ $$$${distance}\:{between}\:{the}\:{towers}\:{must} \\ $$$${be}\:{zero}! \\ $$

Commented by zainal tanjung last updated on 08/May/20

Berapakah jarak kedua tower ?

$$\mathrm{Berapakah}\:\mathrm{jarak}\:\mathrm{kedua}\:\mathrm{tower}\:? \\ $$

Answered by mrW1 last updated on 23/Apr/17

Solution by assuming the rope curve  as catenary.    Let′s say the rope length is 25m.    Catenary equations with (0,0) at the  lowest point of rope:  y=a×[cosh ((x/a))−1]  s=a×sinh ((x/a))    at x=b:  y=a×[cosh ((b/a))−1]=10−2.5=7.5  ⇒cosh ((b/a))=1+((7.5)/a)  s=a×sinh ((b/a))=((25)/2)=12.5  ⇒sinh ((b/a))=((12.5)/a)    ⇒cosh ((b/a))=1+((7.5)/(12.5))×((12.5)/a)=1+0.6×sinh ((b/a))  ⇒(b/a)≈1.386    ⇒a=((12.5)/(sinh 1.386))=6.669    b=1.386×6.669=9.243    Distance of towers =2×b=18.49 m

$$\boldsymbol{{Solution}}\:\boldsymbol{{by}}\:\boldsymbol{{assuming}}\:\boldsymbol{{the}}\:\boldsymbol{{rope}}\:\boldsymbol{{curve}} \\ $$$$\boldsymbol{{as}}\:\boldsymbol{{catenary}}. \\ $$$$ \\ $$$${Let}'{s}\:{say}\:{the}\:{rope}\:{length}\:{is}\:\mathrm{25}{m}. \\ $$$$ \\ $$$${Catenary}\:{equations}\:{with}\:\left(\mathrm{0},\mathrm{0}\right)\:{at}\:{the} \\ $$$${lowest}\:{point}\:{of}\:{rope}: \\ $$$${y}={a}×\left[\mathrm{cosh}\:\left(\frac{{x}}{{a}}\right)−\mathrm{1}\right] \\ $$$${s}={a}×\mathrm{sinh}\:\left(\frac{{x}}{{a}}\right) \\ $$$$ \\ $$$${at}\:{x}={b}: \\ $$$${y}={a}×\left[\mathrm{cosh}\:\left(\frac{{b}}{{a}}\right)−\mathrm{1}\right]=\mathrm{10}−\mathrm{2}.\mathrm{5}=\mathrm{7}.\mathrm{5} \\ $$$$\Rightarrow\mathrm{cosh}\:\left(\frac{{b}}{{a}}\right)=\mathrm{1}+\frac{\mathrm{7}.\mathrm{5}}{{a}} \\ $$$${s}={a}×\mathrm{sinh}\:\left(\frac{{b}}{{a}}\right)=\frac{\mathrm{25}}{\mathrm{2}}=\mathrm{12}.\mathrm{5} \\ $$$$\Rightarrow\mathrm{sinh}\:\left(\frac{{b}}{{a}}\right)=\frac{\mathrm{12}.\mathrm{5}}{{a}} \\ $$$$ \\ $$$$\Rightarrow\mathrm{cosh}\:\left(\frac{{b}}{{a}}\right)=\mathrm{1}+\frac{\mathrm{7}.\mathrm{5}}{\mathrm{12}.\mathrm{5}}×\frac{\mathrm{12}.\mathrm{5}}{{a}}=\mathrm{1}+\mathrm{0}.\mathrm{6}×\mathrm{sinh}\:\left(\frac{{b}}{{a}}\right) \\ $$$$\Rightarrow\frac{{b}}{{a}}\approx\mathrm{1}.\mathrm{386} \\ $$$$ \\ $$$$\Rightarrow{a}=\frac{\mathrm{12}.\mathrm{5}}{\mathrm{sinh}\:\mathrm{1}.\mathrm{386}}=\mathrm{6}.\mathrm{669} \\ $$$$ \\ $$$${b}=\mathrm{1}.\mathrm{386}×\mathrm{6}.\mathrm{669}=\mathrm{9}.\mathrm{243} \\ $$$$ \\ $$$${Distance}\:{of}\:{towers}\:=\mathrm{2}×{b}=\mathrm{18}.\mathrm{49}\:{m} \\ $$

Commented by tawa last updated on 19/Apr/17

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mrW1 last updated on 22/Apr/17

Solution by assuming the rope curve  as parabola.    Length of rope L=25m.  Distance between towers l=2b    Equation of parabola with (0,0) at  the lowest point of rope:  y=h((x/b))^2  where h=7.5 m    (dy/dx)=((2h)/b^2 )x  L=2∫_0 ^b (√(1+((dy/dx))^2 )) dx  =2∫_0 ^b (√(1+(((2h)/b^2 )x)^2 )) dx  let t=((2hx)/b^2 )  dt=((2h)/b^2 )dx  L=2×(b^2 /(2h))∫_0 ^((2h)/b) (√(1+t^2 )) dt  =(b^2 /h)∫_0 ^((2h)/b) (√(1+t^2 )) dt=(b^2 /(2h))[t(√(1+t^2 ))+ln (t+(√(1+t^2 )))]_0 ^((2h)/b)   =(b^2 /(2h)){(((2h)/b))(√(1+(((2h)/b))^2 ))+ln [(((2h)/b))+(√(1+(((2h)/b))^2 ))]}  =((2h)/((((2h)/b))^2 )){(((2h)/b))(√(1+(((2h)/b))^2 ))+ln [(((2h)/b))+(√(1+(((2h)/b))^2 ))]}  let α=((2h)/b)  L=((2h)/α^2 )[α(√(1+α^2 ))+ln (α+(√(1+α^2 )))]  since h=7.5 and L=25  ((15)/α^2 )[α(√(1+α^2 ))+ln (α+(√(1+α^2 )))]=25  α(√(1+α^2 ))+ln (α+(√(1+α^2 )))−((25)/(15))α^2 =0  ⇒α≈1.6  ⇒Distance l=2b=((4h)/α)=((4×7.5)/(1.6))=18.75 m

$$\boldsymbol{{Solution}}\:\boldsymbol{{by}}\:\boldsymbol{{assuming}}\:\boldsymbol{{the}}\:\boldsymbol{{rope}}\:\boldsymbol{{curve}} \\ $$$$\boldsymbol{{as}}\:\boldsymbol{{parabola}}. \\ $$$$ \\ $$$${Length}\:{of}\:{rope}\:{L}=\mathrm{25}{m}. \\ $$$${Distance}\:{between}\:{towers}\:{l}=\mathrm{2}{b} \\ $$$$ \\ $$$${Equation}\:{of}\:{parabola}\:{with}\:\left(\mathrm{0},\mathrm{0}\right)\:{at} \\ $$$${the}\:{lowest}\:{point}\:{of}\:{rope}: \\ $$$${y}={h}\left(\frac{{x}}{{b}}\right)^{\mathrm{2}} \:{where}\:{h}=\mathrm{7}.\mathrm{5}\:{m} \\ $$$$ \\ $$$$\frac{{dy}}{{dx}}=\frac{\mathrm{2}{h}}{{b}^{\mathrm{2}} }{x} \\ $$$${L}=\mathrm{2}\int_{\mathrm{0}} ^{{b}} \sqrt{\mathrm{1}+\left(\frac{{dy}}{{dx}}\right)^{\mathrm{2}} }\:{dx} \\ $$$$=\mathrm{2}\int_{\mathrm{0}} ^{{b}} \sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{h}}{{b}^{\mathrm{2}} }{x}\right)^{\mathrm{2}} }\:{dx} \\ $$$${let}\:{t}=\frac{\mathrm{2}{hx}}{{b}^{\mathrm{2}} } \\ $$$${dt}=\frac{\mathrm{2}{h}}{{b}^{\mathrm{2}} }{dx} \\ $$$${L}=\mathrm{2}×\frac{{b}^{\mathrm{2}} }{\mathrm{2}{h}}\int_{\mathrm{0}} ^{\frac{\mathrm{2}{h}}{{b}}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt} \\ $$$$=\frac{{b}^{\mathrm{2}} }{{h}}\int_{\mathrm{0}} ^{\frac{\mathrm{2}{h}}{{b}}} \sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\:{dt}=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{h}}\left[{t}\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }+\mathrm{ln}\:\left({t}+\sqrt{\mathrm{1}+{t}^{\mathrm{2}} }\right)\right]_{\mathrm{0}} ^{\frac{\mathrm{2}{h}}{{b}}} \\ $$$$=\frac{{b}^{\mathrm{2}} }{\mathrm{2}{h}}\left\{\left(\frac{\mathrm{2}{h}}{{b}}\right)\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{h}}{{b}}\right)^{\mathrm{2}} }+\mathrm{ln}\:\left[\left(\frac{\mathrm{2}{h}}{{b}}\right)+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{h}}{{b}}\right)^{\mathrm{2}} }\right]\right\} \\ $$$$=\frac{\mathrm{2}{h}}{\left(\frac{\mathrm{2}{h}}{{b}}\right)^{\mathrm{2}} }\left\{\left(\frac{\mathrm{2}{h}}{{b}}\right)\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{h}}{{b}}\right)^{\mathrm{2}} }+\mathrm{ln}\:\left[\left(\frac{\mathrm{2}{h}}{{b}}\right)+\sqrt{\mathrm{1}+\left(\frac{\mathrm{2}{h}}{{b}}\right)^{\mathrm{2}} }\right]\right\} \\ $$$${let}\:\alpha=\frac{\mathrm{2}{h}}{{b}} \\ $$$${L}=\frac{\mathrm{2}{h}}{\alpha^{\mathrm{2}} }\left[\alpha\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }+\mathrm{ln}\:\left(\alpha+\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }\right)\right] \\ $$$${since}\:{h}=\mathrm{7}.\mathrm{5}\:{and}\:{L}=\mathrm{25} \\ $$$$\frac{\mathrm{15}}{\alpha^{\mathrm{2}} }\left[\alpha\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }+\mathrm{ln}\:\left(\alpha+\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }\right)\right]=\mathrm{25} \\ $$$$\alpha\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }+\mathrm{ln}\:\left(\alpha+\sqrt{\mathrm{1}+\alpha^{\mathrm{2}} }\right)−\frac{\mathrm{25}}{\mathrm{15}}\alpha^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\alpha\approx\mathrm{1}.\mathrm{6} \\ $$$$\Rightarrow{Distance}\:{l}=\mathrm{2}{b}=\frac{\mathrm{4}{h}}{\alpha}=\frac{\mathrm{4}×\mathrm{7}.\mathrm{5}}{\mathrm{1}.\mathrm{6}}=\mathrm{18}.\mathrm{75}\:{m} \\ $$

Commented by mrW1 last updated on 22/Apr/17

Terms of Service

Privacy Policy

Contact: info@tinkutara.com