Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 123326 by Dwaipayan Shikari last updated on 24/Nov/20

Σ_(n=1) ^∞ (1/(n^3 +n^2 +n+1))

$$\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{3}} +{n}^{\mathrm{2}} +{n}+\mathrm{1}} \\ $$

Commented by Dwaipayan Shikari last updated on 25/Nov/20

I have found ((γ−1)/2)+(1/(4i))((1−i)ψ(1−i)−(1+i)ψ(i)−1−i)

$${I}\:{have}\:{found}\:\frac{\gamma−\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{4}{i}}\left(\left(\mathrm{1}−{i}\right)\psi\left(\mathrm{1}−{i}\right)−\left(\mathrm{1}+{i}\right)\psi\left({i}\right)−\mathrm{1}−{i}\right) \\ $$

Answered by mnjuly1970 last updated on 25/Nov/20

=Σ(1/((n^2 +1)(n+1)))=Σ_(n=1) ^∞ (1/((n−i)(n+i)(n+1)))  =(1/(2i))Σ_(n=1) ^∞ [(1/((n−i)(n+1))) −(1/((n+i)(n+1)))]  (1/(2i))Σ_(n=1) ^∞ ((1/((n−i)(n+1))))−(1/(2i))Σ_(n=1) ^∞ ((1/((n+i)(n+1))))  (1/(2i(1+i))){Σ_(n=1) ^∞ (1/(n−i)) −(1/(n+1))}−(1/(2i(1−i))){Σ_(n=1) ^∞ (1/(n+i))−(1/(n+1))}  =(1/(2i(1+i)))(ψ(2)−ψ(1−i))−(1/(2i(1−i)))(ψ(2)−ψ(1+i))  =[(1/(2i(1+i)))−(1/(2i(1−i)))]ψ(2)+(1/(2i(1−i)))ψ(1+i)−(1/(2i(1+i)))ψ(1−i)  =((−2i)/(2i(1+1)))ψ(2)+{(1/(2i))[((ψ(1+i))/(1−i))−((ψ(1−i))/(1+i))]}  =((−1)/2)(1−γ)+{(1/(4i))[(1+i)ψ(1+i)−(1−i)ψ(1−i)]}=A  =(1/2)(γ−1)+A^?  ✓

$$=\Sigma\frac{\mathrm{1}}{\left({n}^{\mathrm{2}} +\mathrm{1}\right)\left({n}+\mathrm{1}\right)}=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({n}−{i}\right)\left({n}+{i}\right)\left({n}+\mathrm{1}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left[\frac{\mathrm{1}}{\left({n}−{i}\right)\left({n}+\mathrm{1}\right)}\:−\frac{\mathrm{1}}{\left({n}+{i}\right)\left({n}+\mathrm{1}\right)}\right] \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left({n}−{i}\right)\left({n}+\mathrm{1}\right)}\right)−\frac{\mathrm{1}}{\mathrm{2}{i}}\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{\left({n}+{i}\right)\left({n}+\mathrm{1}\right)}\right) \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}+{i}\right)}\left\{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}−{i}}\:−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\}−\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{i}\right)}\left\{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+{i}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}+{i}\right)}\left(\psi\left(\mathrm{2}\right)−\psi\left(\mathrm{1}−{i}\right)\right)−\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{i}\right)}\left(\psi\left(\mathrm{2}\right)−\psi\left(\mathrm{1}+{i}\right)\right) \\ $$$$=\left[\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}+{i}\right)}−\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{i}\right)}\right]\psi\left(\mathrm{2}\right)+\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}−{i}\right)}\psi\left(\mathrm{1}+{i}\right)−\frac{\mathrm{1}}{\mathrm{2}{i}\left(\mathrm{1}+{i}\right)}\psi\left(\mathrm{1}−{i}\right) \\ $$$$=\frac{−\mathrm{2}{i}}{\mathrm{2}{i}\left(\mathrm{1}+\mathrm{1}\right)}\psi\left(\mathrm{2}\right)+\left\{\frac{\mathrm{1}}{\mathrm{2}{i}}\left[\frac{\psi\left(\mathrm{1}+{i}\right)}{\mathrm{1}−{i}}−\frac{\psi\left(\mathrm{1}−{i}\right)}{\mathrm{1}+{i}}\right]\right\} \\ $$$$=\frac{−\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−\gamma\right)+\left\{\frac{\mathrm{1}}{\mathrm{4}{i}}\left[\left(\mathrm{1}+{i}\right)\psi\left(\mathrm{1}+{i}\right)−\left(\mathrm{1}−{i}\right)\psi\left(\mathrm{1}−{i}\right)\right]\right\}={A} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\left(\gamma−\mathrm{1}\right)+\overset{?} {{A}}\:\checkmark \\ $$$$ \\ $$

Commented by Dwaipayan Shikari last updated on 25/Nov/20

Great! thanking you sir

$${Great}!\:{thanking}\:{you}\:{sir} \\ $$

Commented by mnjuly1970 last updated on 25/Nov/20

peace be upon you  sir payan.

$${peace}\:{be}\:{upon}\:{you} \\ $$$${sir}\:{payan}. \\ $$

Commented by mnjuly1970 last updated on 25/Nov/20

Commented by mnjuly1970 last updated on 25/Nov/20

Terms of Service

Privacy Policy

Contact: info@tinkutara.com